• Title/Summary/Keyword: 하천수리

Search Result 1,416, Processing Time 0.027 seconds

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Comparison of Carbonaceous Sediment Oxygen Demand in Lake Paldang and Lake Chungju (팔당호와 충주호 퇴적물의 탄소성 산소요구량 비교)

  • Shin, Yu-Na;Park, Hae-Kyung;Lee, Sang-Won;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.439-448
    • /
    • 2007
  • The purpose of this study was to investigate the seasonal variations of sediment oxygen demand (SOD) in Lake Paldang and Lake Chungju of the Han River system and to suggest SOD values as parameters for the water quality prediction models of two lakes. SOD was measured at laboratory using sediment collected at 2 sites in Lake Paldang from June to November and at 4 sites in Lake Chungju from May to November in 2005, respectively. It was found from the laboratory test that the SOD in Lake Paldang ranged from 337.8 to 881.0 mg $O_2m^{-2}d^{-1}$ and in Lake Chungju ranged from 143.0 to 969.1 mg $O_2m^{-2}d^{-1}$. The SOD of Lake Paldang showed similar variations to the content of organic matter of sediment. The SOD of Lake Chungju was positively correlated with temperature (r=0.78, p<0.01), $PO_4-P(r=0.79,\;p<0.01)$, TP (r=0.55, p<0.05), DTP (r=0.55, p<0.05), $NO_3-N$ (r=(0.72, p<0.01) of hypolimnetic water. These results indicate that the SOD of Lake Paldang was affected by the content and origin of organic matter of sediment and the SOD of Lake Chungju was closely correlated with physical and chemical factors.

The Development and Application of Multi-metric Water Quality Assessment Model for Reservoir Managements in Korea. (우리나라 인공호 관리를 위한 다변수 수질평가 모델의 개발 및 적용)

  • Lee, Hyun-Joon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.242-252
    • /
    • 2009
  • The purpose of this study was to develop a Multi-metric Water Quality Assessment (MWQA) model and apply it to dataset sampled from Paldang and Daechung reservoir in 2008. The various water dataset used to this study included 5 year data sets (2003${\sim}$2007) in Korean reservoirs which were obtained from the Ministry of Environment, Korea. In this study, suggested MWQA model has 4 metrics that were composed of 4 parameters such as chemical, physical, biological, and hydrological variables. And, each of the variables attributed total phosphorus (TP) concentration in water, secchi depth (SD) measure in water, chlorophyll-${\alpha}$(Chl-${\alpha}$) concentration in water and the ratio of inflow of water into lakes and efflux of water from lakes, input/output (I/O). First, we established the criteria for trophic boundaries. The boundary between oligotrophic and mesotrophic categories was defined by the lower third of the cumulative distribution of the values. The mesotrophic-eutrophic boundary was defined by the upper third of the distribution. Second, each metric was given by a point-oligo=1, meso=3, eu=5. And then, obtained total score from each metric was divided 5 grade-Excellent, Good, Fair, Poor, and Very poor. As the results of applying the proposed MWQA model, the Paldang reservoir obtained "Fair" or "Poor" grade and Daechung reservoir obtained "Excellent" or "Good" grade. The suggested MWQA model through these procedures will enable to manage efficiently the reservoir. And, more studies such as metric numbers and attributes should be done for the accurate application of the new model.

The Water Quality Analysis on Climate Change and Dam construction (기후변화와 저수지 건설에 따른 수질분석)

  • Kim, Dong-Il;Choi, Hyun-Gu;Park, Tae-Won;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.193-193
    • /
    • 2011
  • 국제기구인 정부간 기후변화협의체(Intergovernmental Panel on Climate Change, 이하 IPCC)에서는 기후변화가 기온 상승에 따른 증발산량의 증가, 강수량 및 유출량의 시공간적 분포의 변동 등을 초래하여 수자원의 효율적 관리 및 안정적인 공급에 어려움을 증대시킬 것으로 전망하였다. 또한 IPCC 4차 보고서에 따르면 21세기말 지구의 평균기온은 현재보다 최대 $6.3^{\circ}C$정도 더 상승할 것으로 전망하였다. 전구평균기온이 $3.0^{\circ}C$ 증가할 경우 아시아에서만 연간 700만 명이상이 홍수피해 위기에 직면할 것으로 예상되고 있다. 국내의 경우 기온은 전구평균기온에 비해 2배 이상 높은 $1.5^{\circ}C$ 정도 상승하였으며, 최근 50년간의 강우일수는 감소한 반면 일강수량이 80mm 이상인 호우일수의 발생빈도는 증가되고 있다고 보고되었다. 또한 최근의 물수지 해석과 관련하여 거시적인 관점에서 기온 및 강수량 증가에 따른 물순환 과정을 모의하고, 농업용수, 댐건설, 도시화, 토지이용의 변화 등 인위적인 환경 변화 및 기후변화에 따른 유출량의 변화를 정량화하려는 연구들이 수행되고 있다(한국건설기술원, 2007). 이를 위하여 단기적이 아니라 장기적인 측면에서 유출분석을 할 필요가 있으나, 현재까지 보유하고 있는 실측 자료의 한계 및 이러한 조사를 위해 요구되는 시간 및 비용의 한계 때문에, 유출해석 모형을 주로 이용하고 있다. 본 연구에서는 장래 건설예정인 미계측 호소의 유량과 수질을 모의하기 위하여 하천, 하구, 호소 및 해역에 고루 적용할 수 있는 3차원 수리 동력학적인 모델인 EFDC 모형과 시간의 변화에 따른 수질을 모의하는데 가장 널리 이용하는 WASP 모형을 도입하였다. 향후, 내성천의 영주댐 건설과 같은 큰 변화가 발생하였을 기후 변화의 영향을 파악하기 위하여 EFDC와 WASP모형을 이용하여 대상유역에 대한 유출량과 수온의 변화를 통하여 A2, B1 기후변화 시나리오별로 2020년, 2050년, 2080년의 수질(BOD, TN, TP)변화를 분석하여 보았다. 연구의 결과는 다음과 같이 나타났다. EFDC 및 WASP 모형의 연계를 통한 기후 변화 시나리오에 따른 미래의 저수지 수질예측 모의를 수행한 결과, BOD, TN, TP 등 수질농도 변화는 2020년에서 2080년도로 갈수록 BOD, TN 다소 증가하는 경향을 나타내었고, TP농도는 감소하였다. 시나리오별 변화 특성은 TN, TP 농도는 A2 시나리오가 다소 높고, BOD 농도는 B1 시나리오가 A2보다 높은 것으로 나타났다. EFDC와 WASP을 이용하여 미계측 호소에 대한 기후변화 시나리오별로 적용하여 수질변화를 예측하여 보았는데, 향후 기후변화에 따른 기온, 유량변화와 수질 항목간의 상간관계 정립 및 수질 모의의 불확실성 등에 대한 추가 연구가 필요할 것으로 판단된다.

  • PDF

Experimental analysis of geomorphic changes in weir downstream by behavior of alternate bar upstream (보 상류 교호사주의 거동에 따른 하류 지형변화에 대한 실험적 분석)

  • Lee, KyungSu;Jang, Chang-Lae;Kim, GiJung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.801-810
    • /
    • 2019
  • This study analyzes the impact on geomorphic changes downstream due to alternate bars developed weir upstream through laboratory experiments. The disturbance, such as a spur in the side wall, of the flow at the inlet of the channel triggers the development of alternate bar upstream at the beginning of the experiment, and gradually moved downstream with keeping their shapes over time. The bed in the downstream of weir in the mid of channel scoured due to the scarcity of sediment inflow because weir upstream traps it. Moreover, bar migration speed decreases as the bars approaches to the weir with time. However, as time increases, the alternate bars upstream migrate over the weir, and sediment in the eroded bed of the weir downstream are deposited. The phase of the bar upstream changes oppositely after passing through the weir. The phase of the bar downstream changes rapidly as the shape of alternate bar is clear upstream, which is affected by the strong disturbance. The phase of bar changes, and the bar migration speed decreases gradually with time, and finally stopped due to forcing effects on the bar by the disturbance. The faster the reaction of alternate bar with a long spur, the larger the bar height formed downstream and the shorter the bar length. This means that the larger the forcing effect of bar, the more it affects the bar migration. In addition, although the size of the alternate bar increases over time, the bar doesn't migrate downstream and a forced bar is generated.

Assessment of Water Quality in the Miho Stream Using Multivariate Statistics (다변량 통계기법을 이용한 미호천 본류 수질특성 평가)

  • Yoon, Hyeyoung;Kim, Jeehyun;Chae, Minhee;Cho, Yoonhae;Cheon, Seuk
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.373-386
    • /
    • 2019
  • In The study, is to investigate the spatial characteristics of the Miho stream, which is the main tributary of the Geum River system, and to identify the main factors influencing the water quality using water quality analysis and multivariate analysis. The survey subjects were selected as 7 main sites in the Miho stream water system, From 2012 to 2017, 16 items including weather temperature and weather data were used for multivariate analysis. As a result of the water quality analysis, the average concentration of BOD and COD for 6 years was 3grade (normal) compared with the water quality environmental standard (river) of conditions. The concentrations of nitrogen and phosphorus were highest at th upstream site, then decreased and then increased again by the hydrogeological and geomorphological effect. Cluster analysis of spatial and water quality characteristics, it was evaluated as three clusters and the pollution sources is the greatest impact. As a result of principal component analysis and factor analysis on each cluster and mainstream, three to four major components were extracted. Main stream and the Cluster 1, Cluster 3 first principal factor included nitrogen and seasonal factors,first factor of Cluster 2 included nitrogen and water temperature. Nitrogen is the principal factor which affects water quality in Miho stream.

Seasonal Succession of Zooplankton Community in a Large Reservoir of Summer Monsoon Region (Lake Soyang) (몬순지역 대형댐(소양호)에서 동물플랑크톤 군집의 계절천이)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Seasonal succession of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. Annual precipitation was concentrated more than 70% between June and September and it showed remarkably that seasonal variation in water quality. Seasonal variation of water quality in Lake Soyang appeared to be more significant than annual variations, and the inflow of turbid water during the summer rainfall was the most important environmental factor. Zooplankton sepecies composition in Lake Soyang showed obvious tendency through two periods (May to June and August to October) every year. Small zooplankton (rotifer; Keratella cochlearis, Polyarthra vulgaris) dominated in spring and mesozooplankton such as copepods and crustaceans were dominant in summer and fall. Zooplankton biomass showed the maximum in September after monsoon rainfall, and chlorophyll showed a similar seasonal variation and it showed a high correlation (r=0.45). The increase of zooplankton biomass is considered to be a bottom-up effect due to the increase of primary producers and inflow of nutrients and organic matter from rainfall. In this study, we found that the variation of zooplankton community was affected by rainfall in monsoon climate region and inflow of turbid water was an important environmental factor, which influenced the water quality, zooplankton seasonal succession in Lake Soyang. It was also considered to be influenced by hydrological characteristics of lake and environment of watershed. In conclusion, seasonal succession of zooplankton species composition was the same as the PEG model. But seasonal succession of zooplankton biomass differed not only in the temperate lake but also in the monsoon region.

Application of Forest Bird Naturalness Index for Evaluating Biodiversity in National Parks in Korea (국립공원 생물다양성 평가를 위한 산림성 조류 자연성 지수 적용)

  • Choi, Sei-Woong;Jang, Jin;Chae, Hee-Young;Park, Jin-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.2
    • /
    • pp.108-119
    • /
    • 2021
  • We aimed to develop a naturalness index for forest-dwelling birds in four national parks in Korea and to simulate the effect of species loss on this naturalness index. Five bird specialists were asked to give 112 bird species a disturbance susceptibility score (DSS), and the naturalness index was calculated based on this. The 112 bird species represented 8 orders (Cuculiformes, Piciformes, Accipitriformes, Falconiformes, Columbiformes, Caprimulgiformes, Strigiformes, and Passeriformes). DSS was the highest for Terpsiphone atrocaudata and Pitta nympha, and lowest for Pica pica, Hypsipetes amaurotis, and Streptopelia orientalis. There was a significant negative relationship between a species' population number and its DSS. Among the four national parks, Mt. Songni had the highest naturalness index, followed by Mt. Wolak, Mt. Juwang, and Mt. Wolchul. We investigated the change in biodiversity indices under four scenarios, which assumed the extinction of species with less than 5 (Scenario 1), 10 (Scenario 2), 50 (Scenario 3), and 100 individuals (Scenario 4). The results showed that although all biodiversity indices decreased as the species loss increased, they all behaved differently. Fisher's alpha diversity decreased as the number of species proportionally decreased. There was almost no change in Shannon-Wiener H' index in Scenarios 1 and 2. The naturalness index showed increased sensitivity in Scenarios 1 and 4. Our future aims are to obtain the DSS for all forest-dwelling bird species, and to adopt the naturalness index to evaluate temporal and spatial changes in biodiversity.

Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime (자연유황 회복을 위한 댐 운영에 따른 금강의 물리서식처 변화 분석)

  • Choi, Byungwoong;Jang, Jiyeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.985-998
    • /
    • 2021
  • In general, the upstream dam changes downstream flow regime dramatically, i.e., from natural flow regime to hydropeaking flows. This study investigates the impact of the natural flow pattern on downstream fish habitat in a regulated river in Korea using the physical habitat simulation. The study area is a 13.4 km long reach of the Geum-gang River, located downstream from the Yongdam Dam, Korea. A field monitoring revealed that three fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, and Opsariichthys bidens, and they account for 70% of the total fish community. Specially, Opsariichthys bidens is an indigenous species in the Geum-gang River. The three fish species are selected as target fish species for the physical habitat simulation. The Nays2D model, a 2D shallow water equation solver, and the HSI (Habitat Suitability Index) model are used for hydraulic and habitat simulations, respectively. To assess the impact of the natural flow pattern, this study uses the annual natural flow regime and hydropeaking flows from the dam. It is found that the natural flow regime increases significantly the Composite Suitability Index (CSI) in the study reach. Then, using the Building Block Approach (BBA), the scenarios for the modifying dam operations are presented in the study reach. Both Scenario 1 and scenario 2 are proposed by using the hydrological method considering both magnitude and duration of the inflow and averaging the inflow over each month, respectively. It is revealed that the natural flow regime embodied in scenario 1 and scenario 2 increases the Weighted Usable Area (WUA) significantly, compared to the hydropeaking flows. In conclusion, the modifying the dam operations by restoring to the natural flow pattern is advantageous to fish community.