• Title/Summary/Keyword: 하천공법

Search Result 206, Processing Time 0.026 seconds

Development of Revegetation Technique for Water Attacking Point Using Waterlogged Prevention Frame Revetment (침수방틀을 이용한 자연형 하천의 수충부 녹화공법 개발)

  • Moon, Seok Ki;Lee, Eun Yeob;Han, Sung Sik;Lee, Ki Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.98-109
    • /
    • 2001
  • This study aimed to investigate the effect of revegetation technique for water attacking point using waterlogged prevention frame revetment. In this study, we evaluate frame revetment stability, water quality, plant growth and ecological and envirnomental changes in Mooshim streamside landscape. The results are as follows; 1) The waterlogged prevention frame revetment appeared to be stable despite of two big floods. The materials used for the revetment were not eroded on the water attacking point. Thus, we confirmed the effect of scour prevention of the frame work. 2) The effects of the frame revetment on the water quality appeared to be good for the surrounding environment. Dissolved Oxygen(DO) was higher about $0.4{\sim}0.6mg/{\ell}$ at the frame revetment than that of the main stream flow. pH value was lower about 0.4~0.5. Electric Conductivity(EC) showed lower about $0.8{\sim}1.1{\mu}s/cm$. at submersion prevent frame than the low-flow of the stream. Turbidity was lower about $0.6{\sim}1.2mg/{\ell}$. 3) As the effects on ecological and environmental conditions, we discovered a number of carassius auratus and Zacco platypus in the frame revetment area. Also, sympetrum balteata, coenagrionidae was observed frequently. 4) The plant growth did not appear to tumble or wither despite of two big floods. The visual rating of plant growth was evaluated as medium (around 5 point) 5) The landscape analysis derived four factors(i.e. the harmony, the variation, the flexibility and the provincial characteristics) from the factor analysis.

  • PDF

Basic Study on the Design and Optimization of Sonoreactors for Sonochemical Water/Wastewater Treatment Processes (초음파 수처리 공정 개발을 위한 반응기 설계 기초 연구)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Ultrasound technology can be applied in various fields including environmental, energy, and material engineering processes. In this study the effect of liquid height/volume on calorimetric energy and sonochemical oxidation was investigated as one of the basic steps for the design of water/wastereater treatment sonoreactors. The liquid height was increased from 0 to $4{\lambda}$ by $1/4{\lambda}$ and it was found that both calorimetric energy and sonochemical oxidation were significantly increased at relatively high liquid height/volume where the power density was relatively low. The sonochemiluminescence (SCL) images for the visualization of the activity of cavitation also showed that larger and more stable active zone was formed with high SCL intensity at high liquid height/volume. Therefore, it was revealed that sonoreactors for water/wasterwater treatment could be significantly effective in terms of removal efficiency and energy consumption.

A Study on the Field Application of Alkaline Tunnel Wastewater to Neutralization Using CO2 (터널시공 시 이산화탄소(CO2)를 이용한 알칼리성 폐수의 중화처리 현장적용 연구)

  • Park, Young-Jin;Lee, Ho-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.27-34
    • /
    • 2020
  • Strong alkaline waste water is generated in large quantities due to using Concrete, shotcrete and various compounds in tunnel construction sites. As the release of this alkaline waste water will contaminate the stream water, it has to be neutralized. Currently, this waste water is mainly neutralized by using sulfuric acid or hydrochloric acid, but the risks of corrosion and handling of facilities are inherent and the chemical control act requires strict management measures. Therefore, using CO2 (carbon dioxide) as an alternative has been highlighted and various indoor experiment studies have been conducted to prove its potential. However, it is difficult to apply CO2 to the site because it is still completely lacking in field application research and shows different characteristics from indoor experiments. In this study, the actual site applicability is verified through field testing.

Case Study on the Treatment of Acid Rock Drainage from an Embankment with Pyrite Rocks (황철석 암버럭을 이용한 고속도로 성토체의 산성배수 처리 사례 연구)

  • Gong, Jeong-Sik;Kim, Tae-Hyung;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.523-532
    • /
    • 2021
  • The treatment of acid rock drainage was reviewed and evaluated for the case of pyrite rocks distributed in a highway embankment. During the highway's construction, neutralization using alkaline water repellent was applied to the embankment section to prevent acid rock drainage. However, it still occurred long after the construction was completed owing to rain infiltration, and the acid rock drainage polluted the surrounding soils and streams. To solve this problem, treatment facilities such as SAPS (Successive Alkalinity Producing Systems) or ecological wetlands and sand filtration were installed. After the installation of the treatment facilities, the effluent and soils contaminated by acid rock drainage nearby the outlet of the facilities were analyzed and evaluated for a period of years. Measurements of the pH of the effluent and analysis of the heavy metal contamination of the soils confirmed that the neutralization treatment for acid rock drainage is being performed properly and that contamination of heavy metals in the acid rock drainage is also being stably controlled by the treatment facilities.

Improvement of the Priority Index for Choice between Repair and Reinforcement Methods of Dam and River Facilities (댐·하천 시설물 보수·보강공법 선정을 위한 우선순위지수 산정식 개선방안 연구)

  • Kim, Dong Hyun;Youn, Hee Jung;Yoo, Hyung Ju;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.234-234
    • /
    • 2021
  • 국내 기반시설의 대부분은 1970년대 경제성장기에 건설되어 사용연수가 30년 이상 경과하였고 급격한 고령화가 진행 중이다. 1990년대 성수대교와 삼풍백화점의 붕괴는 시설물 유지관리의 중요성에 대한 전국민적 관심을 집중시켰고, 이에 정부는 1995년 「시설물의 안전관리에 관한 특별법」 제정을 시작으로 현재까지 다양한 정책 및 기준을 수립해왔다. 일반적으로 안전점검 및 정밀안전진단 등을 수행하여 시설물의 안전등급을 평가하고 결함에 대한 보수·보강을 실시하여 시설물을 유지·관리하고 있다. 그러나 유지관리 예산은 한정적이기 때문에 모든 결함에 대한 보수·보강 사업을 실시할 수 없는 실정이다. 이에 보수·보강 조치의 우선순위를 선정하는 것이 필요하며, 관련 법령 세부지침에는 부재의 중요도, 결함의 심각성, 경제성을 고려한 우선순위지수(PI, Priority Index)를 제시하고 있다. 이 식은 전문가의 주관적인 판단에 의해 영향도를 50~100%범위 안에서 조정할 수 있으며, 일부 특정 부재는 동일한 가중치가 설정되어 있다. 또한 결정적으로 보수보강을 통한 효과를 효율적으로 고려하지 못하고, 대부분 경제성에 의해 우선순위가 결정되는 한계점이 발생한다. 따라서, 본 연구에서는 몇 가지 사례분석을 통해 현재 우선순위지수에 대한 문제점을 고찰하고 이를 개선할 수 있는 우선순위 산정식(PI)을 제시하였다. 과거 유지관리 시행 초기에는 보수보강 사례가 부족하였지만 현재는 수십년간의 축적된 자료를 바탕으로 제시된 산정식을 충분히 활용할 수 있을 것으로 판단된다. 향후 보수보강 효과를 정량화하는 방법에 대한 추가적인 연구가 수행된다면 더욱 경제적인 측면에서 우선순위를 산정할 수 있을 것이며 노후화된 기반시설 유지관리방안에 효과적으로 사용될 것으로 기대된다.

  • PDF

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Discharge Rate Prediction of a new Sandbypassing System in a Field (새로운 샌드바이패싱 시스템의 토출율 예측을 위한 현장실험 연구)

  • Kweon, Hyuck-Min;Park, Sang-Shin;Kwon, Oh-Kyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.292-303
    • /
    • 2011
  • A new type of sand bypassing system is proposed for recovering the eroded beach in this study. This system provides an added methodology to the soft defence which is main recovery method for the coastal shore protection in the world. The study proposes a conceptional design and manufacturing procedure for the relatively small size machine of sand bypassing. In order to get the discharging volume information, the power capacity of the system is tested in the field. The discharge rate of the new system shows up to the expected maximum of 618 ton/hr which is 9.6% lower than that by theoretical calculation. It gives a resonable agreement in this system when the flow is assumed to be of the high density. In this study, the delivering volume of sand is estimated according to the discharge rate. The combination of 300 mm(12 inch) intake and 250 mm(10 inch) discharge pipe line has the pumping capacity of $103\;m^3/hr$ which is nearly the same as that of South Lake Worth Inlet sand bypassing system, Florida, U.S.A.. The proposed system added the mobility to its merit. The unit price of Florida's sand bypassing is $$8~9/m^3$ (US). The system would be economically suitable for small volume of sand because no additional equipment is necessary for the intake. The diesel fuel of 25~30 l/hr was consumed during the system operation. The multiple working system would be the next investigation target for large volume of sand.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.