• Title/Summary/Keyword: 하천공간정보

Search Result 444, Processing Time 0.034 seconds

Awareness of Urban Environment and LID for Expanding LID Application (LID 적용확대를 위한 시민의 도시환경 및 LID 인식)

  • Kim, Youngman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • The future water management needs decentralization of facilities, diversity of technology and integration of management to overcome the waste of financial resources and increase in scale of facilities that occurred from centralized water management. In addition, citizen's environmental awareness and participation is important because all infrastructure installed in the watershed where citizens live should have the function of water management. Therefore, the research was performed by investigating the citizen's recognition about urban environment와 LID application to analyze citizen's perceptions and analyze the feasibility and possibility of LID application. The LID awareness of citizens was about 59%, but only about 46% of citizens agreed on the extension of application. However, after contacting LID photographs and information, 90% of respondents agreed on the application of LID, and 94% of respondents were able to distinguish between grey infrastructure and LID infrastructure. Citizens appeared to have a tendency to recognize green spaces as multi-functional LID infrastructure or green infrastructure. If citizens recognize multi-functional LIDs only as landscapjng area, it will be very difficult to extend the LID on the city areas. Therefore, for the extended application of the LID facilities, it is necessary to use public relations strategy to utilize the results and visual data on the actual effect verification. In addition, as every social infrastructure is formed in watershed where citizens live, it is necessary to plan and manage the infrastructure through governance with citizen participation.

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Study on the Strategy for Managing Aggregate Supply and Demand in Gyeongsangbuk-do, South Korea (경상북도 골재수요-공급 관리 전략 연구)

  • Jin-Young Lee;Sei Sun Hong;Chul Seoung Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.161-175
    • /
    • 2024
  • Aggregate typically refers to sand and gravel formed by the transportation of rocks in rivers or artificially crushed, constituting a core resource in the construction industry. Gyeongsangbuk-do, the largest administrative area in South Korea, produces various sources of gravel, including forest, land (excluding other sources), river, and crushed stone. As of 2022, it has extracted approximately 6.96 million cubic meters of aggregate, with permitted production totaling around 4.07 million cubic meters and reported production of about 2.88 million cubic meters. The aggregate demand in Gyeongsangbuk-do is estimated to be 12.39 million cubic meters according to the estimation method in Ready-Mix Concrete. From the supply perspective, about 120 extraction sites are operational, with most municipalities maintaining an appropriate balance between aggregate demand and supply. However, in some areas, there is inbound and outbound transportation of aggregate to neighboring regions. Regions with significant inbound and outbound aggregate transportation in Gyeongsangbuk-do are areas connected to Daegu Metropolitan City and Pohang City along the Gyeongbu rail line, showing a high correlation with population distribution. Gyeongsangbuk-do faces challenges such as population decline, aging rural areas, and insufficient balanced regional development. Analysis using GIS reveals these trends in gravel demand and supply. Currently in this study, Gyeongsangbuk-do meets its demand for aggregate through the supply of various aggregate sources, maintaining stable aggregate procurement. River and terrestrial aggregates may be sustained as short-term supply strategies due to the difficulty of longterm development. Considering the reliance on raw material supply for selective crushing, it suggests the need for raw material management to maintain stability. Gyeongsangbuk-do highlights quarries in the forest as an important resource for sustainable aggregate supply, advocating for the development of large-scale aggregate quarries as a long-term alternative. These research findings are expected to provide valuable insights for formulating strategies for sustainable management and stable utilization of aggregate resources.

Interannual and Seasonal Variations of Water Quality in Terms of Size Dimension on Multi-Purpose Korean Dam Reservoirs Along with the Characteristics of Longitudinal Gradients (우리나라 다목적댐 인공호들의 규모에 따른 연별.계절별 수질변이 및 상.하류간 종적구배 특성)

  • Han, Jeong-Ho;Lee, Ji-Yeoun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.319-337
    • /
    • 2010
  • Major objective of this study was to determine interannual and seasonal water quality along with characteristics of longitudinal gradients along the reservoir axis of the riverine zone (Rz)-to-lacustrine zone (Lz). Water quality dataset of five years during 2003~2007 used here were obtained from Ministry of Environment, Korea and ten physical, chemical and biological parameters were analyzed in the study. Similarity analysis, based on moropho-hydrological variables of reservoir surface area, watershed area, total inflow, and outflow, showed that the reservoirs were categorized as three groups of large-dam reservoirs (Chungju Reservoir, Daecheong Reservoir and Soyang Reservoir), mid-size reservoirs (Andong Reservoir, Yongdam Reservoir, Juam Reservoir and Hapcheon Reservoir), and small-size reservoirs (Hoengseong Reservoir and Buan Reservoir). According to the data comparison of high-flow year (2003) vs. lowflow year (2005), dissolved oxygen (DO), pH, biological oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), chlorophyll-a (CHL) and electrical conductivity (EC) declined along the longitudinal axis of Rz to Lz and water transparency, based on Secchi depth (SD), increased along the axis. These results indicate that transparency was a function of Values of pH, DO, SS, SD, and EC at each site were greater in the low-flow year (2005) than the high-flow year (2003), whereas values of BOD, COD, TN, TP and CHL were greater in the high-flow year (2003). When values of TN, TP, CHL and SD in nine reservoirs were compared in the three zones of Rz, Tz, and Lz, values of TN, TP and CHL declined along longitudinal gradients and SD showed the opposite due to the sedimentation processes from the water column. Values of TN were not statistically correlated with TP values. The empirical linear models of TP-CHL and CHL-SD showed significant (p<0.05, $R^2$>0.04). In the mid-size reservoirs, the variation of CHL was explained ($R^2$=0.2401, p<0.0001, n=239) by the variation of TP. The affinities in the correlation analysis of mid-size reservoirs were greater in the CHL-SD model than any other empirical models, and the CHL-SD model had an inverse relations. In the meantime, water quality variations was evidently greater in Daecheong Reservoir than two reservoirs of Andong Reservoir and Hoengseong Reservoir as a result of large differences of water quality by long distance among Rz, Tz and Lz.

An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios (RCP8.5 기후조건의 작물생육모의에 근거한 우리나라 곡물생산 전망)

  • Kim, Dae-Jun;Kim, Soo-Ock;Moon, Kyung-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.132-141
    • /
    • 2012
  • Climate change impact assessment of cereal crop production in South Korea was performed using land attributes and daily weather data at a farm scale as inputs to crop models. Farmlands in South Korea were grouped into 68 crop-simulation zone units (CZU) based on major mountains and rivers as well as existing land use information. Daily weather data at a 1-km grid spacing under the A1B- and RCP8.5 scenarios were generated stochastically to obtain decadal mean of daily data. These data were registered to the farmland grid cells and spatially averaged to represent climate conditions in each CZU. Monthly climate data for each decade in 2001~2100 were transformed to 30 sets of daily weather data for each CZU by using a stochastic weather generator. Soil data and crop management information for 68 CZU were used as inputs to the CERES-rice, CERE-barley and CROPGRO-soybean models calibrated to represent the genetic features of major domestic cultivars in South Korea. Results from the models suggested that the heading or flowering of rice, winter barley and soybean could be accelerated in the future. The grain-fill period of winter barley could be extended, resulting in much higher yield of winter barley in most CZUs than that of rice. Among the three major cereal grain crops in Korea, rice seems most vulnerable to negative impact of climate change, while little impact of climate change is expected on soybeans. Because a positive effect of climate change is projected for winter barley, policy in agricultural production should pay more attention to facilitate winter barley production as an adaptation strategy for the national food security.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.