• Title/Summary/Keyword: 하중-변위 곡선

Search Result 293, Processing Time 0.028 seconds

Load-Displacement Characteristics and Interactive Load Capacity Model for Metal Plate Connections in Wood (I) - Load-displacement characteristics - (목재(木材)-금속(金屬)플레이트 접합부(接合符)의 하중(荷重)-변위(變位) 특성(特性) 및 조합하중성능(組合荷重性能)에 대한 모형(模型) 분석(分析) (I) - 하중(荷重)-변위(變位) 특성(特性) -)

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 1995
  • 고도(高度)의 엔지니어링 구조물(構造物)로 경제성이 높은 경골(輕骨) 목조(木造) 트러스에 사용될 수 있는 소나무(Pinus densiflora) 재(材)에 적용한 20게이지 아연도금강(鋼) 플레이트 접합부(接合部)의 하중(荷重)-변위(變位) 특성(特性)을 평가하기 위하여 Foschi 모형을 사용하여 모형 모수(母數)를 산출하고 실험치와 계산치를 비교 분석하였다. 접합부(接合部)의 하중(荷重)-변위(變位) 곡선(曲線)은 비선형 특성을 나타내었다. 접합부의 하중성능 및 강성(剛性)은 플레이트 및 목리에 평행한 형태에서 최대치를 나타내었고, 플레이트에 직각이고 목리(木理)에 평행한 형태로부터 플레이트에 평행이고 목리에 직각인 형태순으로 감소하다 플레이트 및 목리에 직각인 형태에 최소치를 나타내었다. 3-모수(母數) 비선형 모형으로 예측된 스테인레스강(鋼) 및 아연도금강(鋼) 플레이트 접합부의 하중-변위 특성에 대한 계산치는 실험치와 잘 일치하였다.

  • PDF

Nonlinear Analysis of Reinfored Concrete Beams by Displacement Control Method (변위제어법에 의한 철근콘크리트 보의 비선형해석법)

  • 김진근;이을범;이태규
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • In this paper a computer program for displacement control method was developed, in which a certain displacement of the structure is increased and the applied loads and another displacements are obtained. To simplify the nonlinear structural analysis, the relationships of moment-curvature were linearized as elasto-softening model for over-reinforced concrete beam and as elasto-plastic-softening model for under-reinforced concrete beam. Since the result of the analysis of reinforced concrete beam depended on the element size beyond elastic zone, the relationship of moment-curvature was modified for each element by using the concept of fracture energy approach. Overall, analytical results accurately predicted the load-displacement behavior of reinforced concrete beams.

  • PDF

Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges (곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구)

  • Kim, Sang Hyo;Cho, Kwang Il;Park, Byung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.955-963
    • /
    • 2006
  • As the geometrical characteristic of the curved bridge, the seismic response of curved bridges are different from straight bridges. This study analyzed the seismic response of the curved bridges considering diverse factors such as radius of curvature, direction of seismic load and support condition. The improved simple modeling of the curved bridge for seismic analysis is proposed, and it is compared with the detail modeling in order to verify the simple modeling. Three simply supported curved bridges and six 3-span continuous bridges are selected for seismic analysis. The behavior of curved bridges are evaluated in terms of the displacement and the force at supports and piers under seismic load applied in various directions. The results of this study show that upward reaction force may appear in simply supported curved bridge under seismic load. And continuous curved bridges are affected by the direction of the seismic load.

A Simple Finite Element Method to Determination of Deformed Shape and Load-Displacement Curve of Elastomers (방진고무 변형형상 및 하중-변위곡선 예측을 위한 단순 유한요소법)

  • Jeon, Man-Su;Mun, Ho-Geun;Kim, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.217-222
    • /
    • 1997
  • A simple finite element approach to predicting deformed shape and load-deflection curve of elastomers is presented in this paper. The method is based on several simplifications in deformation pattern and material behavior. The conventional updated Lagrangian approach is employed together with material data obtained by a simple tension test. The presented approach is verified through comparison of predicted results with experimental ones and applied successfully to shape design of various elastomers for shock, vibration and noise control. The advantage of the presented approach lies in easiness, simplicity and accuracy enough for engineering application.

Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities (강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측)

  • 홍원기
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.159-171
    • /
    • 1995
  • The parameters describing a complete hysteresis loop include pinch force, drift offset, effective stiffness, unloading and reloading trangential stiffness. Analytical equations proposed to quantify the nonlinear, inelastic behavior of reinforced shear walls can be used to predict these parameters as a function of axial load and drift ratio. For example, drift offset, effective stiffness, and first and second unloading and reloading tangential stiffness are calculated using equations obtained from test data for a desired drift ratio or ductility level. Pinch force can also be estimated for a given drift ratio and axial load. The effective virgin stiffness at the first yield and its post yield reduction can be estimated. The load deflection response of flexural reinforced concrete shear walls can now be estimated based on the effective wall stiffness that is a function of axial force and drift ratio.

  • PDF

Damage Curves for the Shear Building to the Local Impact (국부충격에 의한 전단건물의 손상곡선)

  • Lee, Sang-Ho;Hwang, Sin-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 2004
  • The damage curves for the 2-story shear building to the impulsive rectangular loads were established with the peak load and Impulse ratio producing the critical displacement. The convolution integrations with the Impulse response matrix and the loads were used to find the responses of the building. The impulse response matrix required in the calculations of the convolution integration were found with the mode superposition method It is shown from the established damage curves that the responses of the top and bottom floor are sensitive to the magnitude and the impulse of the loads respectively.

Influence of Bias Weight of Vibratory Pile Driver on Load Transfer Characteristics of Piles (진동타입기의 사하중이 말뚝의 하중전이 특성에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5268-5273
    • /
    • 2013
  • Technique for analyzing pile installed by vibratory pile driver was developed and results of analysis obtained from variation of bias weight were studied. It can be seen from load transfer curve for dynamic skin friction that load transfer curve shift to downward as bias weight increases. Shape of load transfer curve for dynamic skin friction becomes closer to shape of coil as the bias weight decreases. Magnitudes of toe resistances were not affected by the bias weight. Shape of load transfer curve for dynamic toe resistance shows the similar tendency as the load transfer curve for skin friction exhibits. Vertical displacement increases as the bias weight increases and the shape of vertical displacement with time shows more distinct shape of wave.

Proposed Reduction Factor of Cyclic p-y Curves for Drilled Shafts in Weathered Soil (풍화토 지반에 근입된 현장타설말뚝의 Cyclic p-y 곡선의 감소계수 제안)

  • Kim, Byung-Chul;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.47-63
    • /
    • 2015
  • A fundamental study of drilled shafts subjected to lateral cyclic loading in weathered soil was carried out based on field tests and numerical analysis. The emphasis was given on quantifying the cyclic p-y curve function from lateral cyclic loading tests and three-dimensional finite element analysis. Lateral cyclic loading tests and three-dimensional finite element analysis were carried out to investigate the behavior of drilled shafts according to the direction of cyclic loading. Based on the field tests and numerical analysis, a modified lateral load transfer relationship and design chart with degradation factors were proposed by considering the characteristics of cyclic loading. It was found that the prediction by the proposed p-y curve function is in good agreement with the general trends observed by in-situ measurements, and it represents a practical improvement in the prediction of lateral displacement and bending moment distribution of drilled shafts subjected to cyclic loading.

A Method to Determine the Fracture Toughness $J_{IC}$ (파괴 인성치 $J_{IC}$의 결정 방법에 관한 연구)

  • 최영환;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.79-86
    • /
    • 1990
  • A method to determine directly $J_{IC}$ from load-displacement curve without measuring crack growth amount is studied. A method to use key curve in determination of $J_{IC}$ is also considered. The values of $J_{IC}$ obtained from the above methods are compared with that obtained from the ASTM standard test method (E813). By performing experiments using both compact-tension specimen and three-point-bending specimen of a structural alloy steel SCM4, it is shown that the methods proposed here may be used in determination of $J_{IC}$.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.