• Title/Summary/Keyword: 하중 인식

Search Result 95, Processing Time 0.022 seconds

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Erosion Control Effect by Soil ansi Vegetation Transition in Mountainous Area after Soil Erosion Measures were Initiated (토양 및 식생변화에 따른 토지 사방 공사의 효과에 관한 연구)

  • 이천용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.2
    • /
    • pp.7-16
    • /
    • 1986
  • This study was carried out to investigate the effects of such erosion control measures as sowing, planting and small earth structures on the soil and vegetation. In order to study the changes in soil and vegetation, 36 plots were surveyed from 1981 to 1982 in the large erosion control area which is restored last 20 years. The factors which were measured included vegetation coverage, tree growth, number of species, soil depth, soil consistancy, and Chemical properties of soil. The results were as follows; 1) Maximum coverage of the overstory and understory was attained 7 years after the initiation of erosion control. So the overstory need to be tended and pruned. 2) Diversity of species increased until age 6 after which it began to decrease. 3) In order of tree growth, black locust was the fastest, followed by siberian alder and pitch pine. The initial growth of black locust, though the best among the 3 tree stop., decreased rapidly year by year. At the same time, siberian alder and pitch pine grew well until 12 and 6 years after the initiation of erosion control respectively. 4) Fifty percent of the initially planted trees died within 8 yeard. The mortality of siberian alder occurred until the 20th year while the mortality of pitch pine stopped after 10 years. Thereafter 500 trees per hectare were maintained. 5) The soil depth in A and B horision increased by 2cm annually during 20 years. The soil consistency also decreased rapidly until 7th year. The physical soil properties of the rehabilitated areas were improved after the 14th year. 6) The soil pH tend to decrease from 5.3 during the first year to 5.1 during the twentieth year. 7) The organic matter and nitrogen content in the soil were increased by fertilization but after 20 years these nutrients are still deficient for normal tree growth. 8) The phosphorous content in the soil was high in the first year but the longer the period after the initiation of erosion control the lese the content of phosphorous. 9) The biomass of black locust was the highest and increased continuously. The biomass of siberian alder on the contrary decreased from the 15th year because the number of trees in this place was very low. The total biomass in the twentieth year after erosion control initiation was 105.7 ton per hectare.

  • PDF

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

A Study on the Changes in Gwi-po from Tang to Jin Dynasty in China - Focusing on the connection type of Jwau-dae(左右隊) - (중국 당대~금대 목조 건축의 귀포 변천에 관한 연구 - 좌우대의 결구 유형을 중심으로 -)

  • Lee, Byung-Chun;Lee, Ho-Yeol
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.3
    • /
    • pp.96-119
    • /
    • 2015
  • This research has studied the changes of Gwi-po(轉角包) by taking the cases of China's medieval wooden buildings as objects. The purpose of the study is to examine the time-periodic transition process of Gwi-po through the cases of 71 wooden buildings which were built from Tang(唐) dynasty(AD 618~690 & 705~907) until Jin(金) dynasty(AD 1115~1234) and also designated as 'Major Historical and Cultural Sites Protected at the National Level'. This research has taken note of various frame types of Jwau-dae(左右隊), which are architectural components of Gwi-po, to study the changes and development process of Gwi-po. The results are as follows. An important factor in the transformations of Gwi-po format is the changes in perception of the craftsmen about Jwau-dae, who took charge in the building process. In the early periods, the principles of Yidou sanshen dougong(一斗三升) in constructing ancons of Gwi-po had been well-maintained, while there appeared many different types of Gwi-po in later periods, due to the usage of Jwau-dae and $Shu{\check{a}}$ $t{\acute{o}}u$(?頭) in each Chulmok of Gwi-po. Transitional types of Gwi-po, which were evolved from the earlier ones, are divided into 3 categories by different forms of Jwau-dae, placed on odd number stages. The first one is 'none-$f{\bar{a}}ng$ $t{\acute{o}}u$(無枋頭) type' of Song(AD 960~1127, 1127~1279) and Liao dynasty(AD 907~1125) buildings, which doesn't have $f{\bar{a}}ng$ $t{\acute{o}}u$(枋頭)s, for the reason that Jwau-dae(左右隊) is in direct contact with Gwihan-dae(耳限大). The second one is '$Shu{\check{a}}$ $t{\acute{o}}u$ $f{\bar{a}}ng$ $t{\acute{o}}u$(?頭枋頭) type' of Song(AD 960~1127, 1127~1279) and Jin dynasty(AD 1115~1234), that has $f{\bar{a}}ng$ $t{\acute{o}}u$(枋頭)s of Jwau-dae(左右隊) identical to $Shu{\check{a}}$ $t{\acute{o}}u$(?頭) in form. The last one is '$Xi{\check{a}}o$ $g{\check{o}}ng$ $t{\acute{o}}u$(小?頭) type' of Jin(AD 1115~1234) and Yuan dynasty(AD 1271~1368), which has $f{\bar{a}}ng$ $t{\acute{o}}u$(枋頭)s of Jwau-dae identical to $Xi{\check{a}}o$ $g{\check{o}}ng$ $t{\acute{o}}u$(小?頭) in form. The earlier forms of Gwi-po, which appeared between Tang dynasty(AD 618~690 & 705~907) and Five Dynasties periods(907~960) went through transitional forms of 'non-$f{\bar{a}}ng$ $t{\acute{o}}u$(無枋頭) type', '$Shu{\check{a}}$ $t{\acute{o}}u$ $f{\bar{a}}ng$ $t{\acute{o}}u$(?頭枋頭) type' and '$Xi{\check{a}}o$ $g{\check{o}}ng$ $t{\acute{o}}u$(小?頭) type' and finally had its form settled between Yuan(元, AD 1271~1368) and Ming(明. AD 1368~1644) dynasty periods. In Liao(遼) dynasty period(AD 907~1125), as the buildings got bigger and the tendency of longer eave-exposure was implemented, there grew a certain need to structurally reinforce Gwi-po, on which load of the whole roof is concentrated. Especially, the transition from Tōuxīn $z{\grave{a}}o$(偸心造) style to Jì xīn $z{\grave{a}}o$(計心造) style in this period had a great influence on standardization of Gwi-po, along with None-${\acute{A}}ng$(無仰) style. Furthermore, Wing-type Gong(翼型?), which developed in Liao dynasty(AD 907~1125), is also thought to have had a great influence on the transition from Tōuxīn $z{\grave{a}}o$(偸心造) style to Jì xīn $z{\grave{a}}o$(計心造) style by changing the forms of Gongs(?), such as Gwi-po. However, unlike None-${\acute{A}}ng$(無仰) style, there occurred a gradual change from '$Shu{\check{a}}$ $t{\acute{o}}u$ $f{\bar{a}}ng$ $t{\acute{o}}u$(?頭枋頭) type' to '$Xi{\check{a}}o$ $g{\check{o}}ng$ $t{\acute{o}}u$(小?頭) type' of Gwi-po in $Xi{\grave{a}}$ ${\acute{a}}ng$ style.

The Landscape Configuration and Semantic Landscape of Hamheo-pavilion in Gokseong (곡성 함허정(涵虛亭)의 경관짜임과 의미경관)

  • Lee, Hyun-Woo;Sim, Woo-Kyung;Rho, Jae-Hyun;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.52-64
    • /
    • 2015
  • This research traced the characteristics of the semantic landscape, construction intent, landscape composition, and geomantic conditions of the area subject to the research based on the research methods of 'field investigation, document studies, and interviews,' centering around the entire area of Gokseong Hamheo-pavilion (Jeonnam Tangible Cultural Assets No. 160). The result of the research, specifically revealing the forms and methods by which the reciprocal view of nature and landscape composition appearing in the landscape of the entire area of Hamheo-pavilion, as part of the analysis and interpretation over the view-based construction characteristics and position of the entire area of Gokseong Hamheo-pavilion, can be summarized as follows. First, Hamheo-pavilion is a pavilion built as a resting area and as a venue for educational activities in 1543 in the nearby areas after Gwang-hyeon Sim founded Gunjichon-jeongsa for educational activities and dwelling purposes at Gunchon at the 30th year of King Jungjong. Gunchon, where Hamheo-pavilion and Gunjichon-jeongsa is located, exhibits the typical form having water in the front, facing Sunja-river(present Seomjin-river), and a mountain in the back side. Dongak-mountain, which is a guardian mountain, is in a snail-type form where cows leisurely ruminate and lie on the riverside, and the Hamheo-pavilion area is said to be an area bordering on one's way of enjoying peace and richness as it is a place with plentiful grass bushes available for cows to ruminate and lie down while sheppards may leisurely play their flutes at the riverside. The back hill of Hamheo-pavilion is a blood vessel that enters the water into the underwater palace of the turtle, and the building sitting on the turtle's back is Hamheo-pavilion, and the Guam-jodae(龜巖釣臺) and lava on the southern side below the cliff can be interpreted to be the underwater fairly land wanted by the turtle.6) Second, Hamheo-pavilion is the scenery viewpoint of Sungang-Cheongpung (3rd Scenery) and Seolsan-Nakjo(雪山落照, 9th Scenery) among the eight sceneries of Gokseong, while also the scenery viewpoint of Hamheo-Sunja(2nd Scenery) and Cheonma-Gwiam(天馬歸岩, 3rd Scenery) among the eight sceneries of Ipmyeon. On the other hand, the pavilion is reproduced through the aesthetics of bends through sensible penetration and transcendental landscape viewed based on the Confucian-topos and ethics as the four bends among the five bends of Sunja-river arranged in the 'Santaegeuk(山太極) and Sutaeguek(水太極, formation of the yin-yang symbol by the mountain and water)' form, which is alike the connection of yin and yang. In particular, when based on the description over Mujinjeong (3rd Bend), Hoyeonjeong(4th Bend), andHapgangjeong(2nd Bend) among the five bends of Sunja-river in the records of Bibyeonsainbangan-jido(duringthe 18th century) and Okgwahyeonji(1788), the scenery of the five bends of Sunja-river allow to glimpse into its reputation as an attraction-type connected scenery in the latter period of the Joseon era, instead of only being perceived of its place identity embracing the fairyland world by crossing in and out of the world of this world and nirvana. Third, Hamheo-pavilion, which exhibits exquisite aesthetics of vacancy, is where the 'forest landscape composed of old big trees such as oak trees, oriental oak trees, and pine trees,' 'rock landscape such as Guam-jodae, lava, and layered rocks' and 'cultural landscape of Gunchon village' is spread close by. In the middle, it has a mountain scenery composed of Sunja-river, Masan-peak, and Gori-peak, and it is a place where the scenery by Gori-peak, Masan-peak, Mudeung-mountain, and Seol-mountain is spread and open in $180^{\circ}$ from the east to west. Mangseo-jae, the sarangchae (men's room)of Gunjichon-jeongsa, means a 'house observing Seoseok-mountain,' which has realized the diverse view-oriented intent, such as by allowing to look up Seol-mountain or Mudeung-mountain, which are back mountains behind the front mountain, through landscape configuration. Fourth, the private home, place for educational activities, pavilion, memorial room, and graveyard of Gunji-village, where the existence and ideal is connected, is a semantic connected scenery relating to the life cycle of the gentry linking 'formation - abundance - transcendence - regression.' In particular, based on the fact that the descriptions over reciprocal views of nature regarding an easy and comfortable life and appreciations for a picturesque scene of the areas nearby Sunja-river composes most of the poetic phrases relating to Hamheo-pavilion, it can be known that Hamheo-pavilion is expressed as the key to the idea of 'understanding how to be satisfied while maintaining one's positon with a comfortable mind' and 'returning to nature,' while also being expressed of its pedantic character as a place for reclusion for training one's mind and training others through metaphysical semantic scenery.