• Title/Summary/Keyword: 하중 복원

Search Result 82, Processing Time 0.031 seconds

Performance Evaluation of Rcentering Smart Damper by Pre-Compression of Polyurethane (폴리우레탄 선압축량에 따른 자동복원 스마트 감쇠장치의 일축반복하중에 대한 성능 평가)

  • Jang, Heemyung
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • As the magnitude and frequency of earthquakes increase in Korea, interest in earthquake damage reduction technology has increased. Therefore, research on vibration damping devices that directly respond to seismic loads is being actively researched. After an earthquake, damage or destruction of the device occurs due to the yield of materials, and thus it takes considerable cost and time for restoration and replacement. To supplement the problems of the existing earthquake damage reduction technology, a study was conducted on the recentering smart damper that can be used continuously after an earthquake. In this study, the recentering smart damper that can be restored to its original shape after load removal was developed using superelastic shape memory alloy, pre-compressed polyurethane. General steel was commonly applied to verify the seismic performance of the superelastic shape memory alloy, and the performance of the smart damper was verified according to the amount of polyurethane pre-compressed

부유식 수중가옥의 계류안정성 설계에 관한 연구

  • Park, Sang-Uk;Lee, Han-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.164-166
    • /
    • 2019
  • 수중에 부유식으로 계류하는 규모와 생활지원 하중요건을 임의 가정한 수중가옥(함체)의 정수압적(hydrostatic) 계류안정성과 시공성 고찰을 목적으로 한다.

  • PDF

Hybrid Damper of Steel Strip and Spring (강재 스트립과 스프링의 혼합형 댐퍼)

  • Kim, Dong-Baek;Lee, In-Duk;Lee, Jae-Won;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.299-300
    • /
    • 2022
  • 구조물의 내진보강방법 중에서 가장 널리 이용되는 방법인 강재 이력형 감쇠장치는 수평하중에 대한 응력-변위 곡선을 이용하여 지진 에너지를 소산시키는 방법인데, 이 경우 편심하중 등에 의해서 부재가 면 외 방향으로 거동하여 응력-변위곡선이 불규칙하여 그 결과의 신뢰성이 떨어지는 경우가 있다. 이러한 형상을 방지하기 위해서는 별도의 채널(Channel)을 시공하는 불편함을 감수해야 하며, 또한 수평력이 반복적으로 작용할 때 그 효과를 장담할 수 없는 문제점이 있다. 본 연구에서는 강재 스트립과 스프링을 결합한 댐퍼를 고안하여 스프링은 탄성변형을, 강재 스트립은 소성변형을 받게 하는 혼합형 댐퍼를 개발하고자한다. 여기서, 스프링은 복원력으로 작용하여 반복하중에 대한 저항성을 키우고 강재 스트립의 하중변위 곡선을 규칙적으로 하는 역할을 수행하게 되며 에너지 소산량을 계산할 때 편리함과 정확도를 높이고자 한다. 강재 스트립의 폭과 길이는 일정하지만 두께를 변화시켜서 5종류를 선택하였으며, 댐퍼 1개당 3개의 스트립을 정삼각형 형태로 배치하고 그 중심에 상당한 강성을 갖는 스프링을 갖는 형태로 제작하였다. 댐퍼 시험체는 5개를 제작한 후, 이 댐퍼를 구조물에 배치하였을 때의 지진에 대한 에너지 소산량과 부재력을 검토하여 댐퍼의 안전성(Safety)를 검증하고자 한다.

  • PDF

Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads (보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석)

  • Chakraborty, Sudipta;Islam, Md. Rajibul;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.10-19
    • /
    • 2022
  • Irregularity in structural shape is a ubiquitous phenomenon. Structural hazards evoked from irregularity need to be checked against extreme lateral loadings. Structures containing four distinct types of irregularities in terms of continuity and discontinuity in upper half-length and all story levels along with O-shape are investigated. The structures were analyzed numerically and different seismic responses such as displacements, bending moment, axial forces, torsions, story drift, etc. were scrutinized. The seismic and wind load analysis was conducted for ACI 318-11 conditions. Results show that buildings having discontinuous beams on the upper half exhibit better resilience. It is also concluded that O-shaped building structures provide better resistance to overturning, making this shape relatively safe.

Conservation Treatment of Janghang-ri Stone Standing Buddha (장항리 석조불입상 보존처리)

  • Kim, Jongwoo;Lee, Seungryul
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.115-124
    • /
    • 2013
  • Disassembly and restoration work of Janghang-ri Stone Standing Buddha in the outdoor exhibition hall of Gyeongju National Museum were conducted for safe management of the collection due to problems like weathering of bonding materials by the outer environment, fixation of pollutants on the surface, and cracks by unidirectional load of rocks. A drawing was made through three-dimensional precise actual measurement, basic material research was conducted, and cement mortar and resin of the weathered part were removed. The restored part was bonded and restored by new stones using the same kind of rock. In addition, in order to prevent damages from microorganisms, fumigation treatment was made. It is under continuous observation.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Stability Characteristics based on Crane Weight of Small Fishing Vessels Under Standard Loading Conditions: Investigation Report of the Capsize Accident at Goseong Port (크레인 교체에 따른 표준재화 상태에서의 소형 어선의 복원성 특성 - 고성항 전복 사고 재결서 중심 -)

  • Kang, Dae Kon;Lee, Gun Gyung;Lee, Jun Ho;Han, Seung Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • In March 2016, a 6.67-ton fishing boat capsized owing to the loss of stability during crane operations. Capsizing occurs when a boat or ship is flipped over (or turned upside down) for reason other than accidents caused by collisions, contact, stranding, fire or explosion. Over the past nine years (2010-2018), capsize accidents have accounted for 2.34 % of all marine accidents and are gradually increasing. The loss of stability from improper shipping is the main cause of most capsizes, especially for small fishing vessels weighing 10 tons. According to the Fishing Vessel Act, small fishing vessels weighing less than a ton are exempted from inspections on stability and load cranes. This study analyzes the issue cited as the reason for the capsizing of the small fishing boat in Goseong, namely, the reduction of restoring moment due to increased weight of the crane. Fishing boats with similar loading conditions were modeled on the basis of re-determination, and their stability before and after the accident was assumed. The fishing boats with heavier cranes were found to be at higher risk of capsizing owing to the reduction of the restoring moment and the angle of deck immersion. Under standard loading conditions, the stability moments of fishing vessels are lesser during fishing, compared to when they depart from or arrive at the port.