• Title/Summary/Keyword: 하중 변위 곡선

Search Result 293, Processing Time 0.023 seconds

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior (지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석)

  • Lee, Joon-Kyu;Kim, Byung-Chul;Jeong, Sang-Seom;Song, Sung-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.31-40
    • /
    • 2008
  • This study presents the assessment of pseudostatic approach for obtaining the internal response of Single Column/Shaft subjected to earthquake loading. In numerical procedure, various lateral load transfer characteristics (p-y curve and Bi-linear curve) were used to model the nonlinear behavior of soil reactions including soil-pile interaction. The analysis using nonlinear soil model could estimate the seismic performance of soil-pile system, despite its relative simplicity. It was found that lateral behavior of single column/shaft obtained from the response displacement method was larger than those by seismic intensity method. To investigate the effects of soil-pile rigidity and pile head condition on the internal pile response, parametric studies were carried out for various soil models. The results from numerical analysis showed that lateral deflection was decreased with fixed condition of pile head and decreasing the soil-pile rigidity. The seismic analysis using Bi-linear model of JRA could reasonably predict the lateral behavior of Single Column/Shaft.

POST-BUCKLING ANALYSIS OF PRESTRESSED CONCRETE BEAN-COLUMNS BY THE DISPLACEMENT CONTROL STRATEGY (변위제어법에 의한 프리스트레스트 콘크리트 보-기둥 구조의 후좌굴거동 해석)

  • 강영진
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.2
    • /
    • pp.121-132
    • /
    • 1989
  • 유한요소법을 바탕으로 한 프리스트레스트 콘크리트 평면 보-기둥 구조의 후좌굴 거동에 대한 수직해석법을 제시하였다. 콘크리트의 균열, 변형연화 및 PS강재의 항복과 같은 재료 비선형성을 고려하였다. 좌굴 거동 연구에 필수적 요소인 기하학적 비선형성을 Updated Lagraugian Formulation에 의하여고려하였다. 현재의 재료성질 및 변형상태에 부합하는 단분형 평형방정식을 수립하고 이것을 불평형 가중보정에 의한 Newton-Raphson 반복법으로 푼다. 좌굴후 발생하는 하중변형 곡선의 하련부는 비선형 평형 방정식의 해법중 일반적으로 많이 사용되는 가중 단분법이 아니라 변위단분법을 사용함으로써 올바르게 추적한다. 요소내의 재료성질변화는 층적분법에 의하여 고려한다. 본 논문에서는 콘크리트 균열에 의한 중립축이동의 영향을 정확히 고려하기 위하여 추가적으로 축방향변위에 대한 내부자유도를 설정하였다. 본 논문에서 제안하는 방법의 정당성과 응용성을 나타내 보일 수 있는 수직해석 예제를 제시하였다.

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.

Analysis of Buried Pipelines Using Ground Strain Input from Seismic Waves (지반변형률에 의한 매설관의 지진차 거동 해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Eo. Jun;Lee, Kang-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.15-26
    • /
    • 2000
  • 지진파 전파로 인한 매설관에 작용하는 지진하중은 지진특성 및 지반조건에 따른 지반변형률로부터 산정되어야 한다. 그러나. 기존에 사용되고 있는 경험적인 방법에 의해 계산된 지반변형률 모형은 지진 및 지반의 지역적 특수성을 고려할 수 없는 문제점을 내포하고 있다. 따라서, 본 연구에서는 이러한 문제점을 개선하기 위하여 지진특성 및 지반조선을 반영할 수 있는 수정된 지반변형률 모형을 제안하고 개발된 모형을 매설관로의 지진해석에 지진하중으로 적용하였다. 여기서, 지반변형률을 예측하기 위한 지진판 전파속도는 지반조건을 고려할 수 있도록 파 에너지분포에 근거한 분산곡선을 제안하여 산정하였다. 이러한 과정을 통해 얻어진 지반변형률 산정방법에 타당성을 파악하기 위해 예측한 지반변형률과 과거 지진으로 실측된 지반변형률을 비교하였다. 타당성이 입증된 지반변형률 모형을 매설관의 하중으로 적용하여 지진해석을 실시하였으며, 계산결과는 범용 유한요소해석을 통한 동해석 및 응답변위법에 의한 결과와 비교하였다. 이를 통해 지반 변형률 모형을 적용한 매설관 지진해석의 타당성을 검증하였다. 또한, 지진 및 지반환경이 다른 다양한 관의 특성을 반영하기 위해, 지진 지반 및 관의 영향 인자에 대해 매개변수 해석에 실시되었으며, 이로써 본 연구의 활용성을 검토하였다.

  • PDF

Study on Seismic Performance of RC Column with Super-Flexibility Membrane (고연성재 보강 철근콘크리트 기둥의 내진성능 연구)

  • Lee, Weon-Cheol;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.1-12
    • /
    • 2013
  • This study presents the evaluations of seismic performance and displacement ductility for two types of RC columns: existing RC column without SFM (Super Flexibility Membrane) and CSF (RC columns strengthened with SFM). After they are analyzed by the experiment as well as FEM, crack patterns and load-displacement curve of CSF by the former are shown to similar to those of CSF by the latter. The flexural cracks are dominant in CSF, whereas shear cracks in CNF (existing RC column without SFM). Displacement ductility of CSF is shown significantly to increase as well as ultimate displacement, compared to those of CNF. Therefore CSF can be replaced to CNF in order to increase the seismic performance and displacement ductility.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles (축하중 재하말뚝의 하중전이 거동에 대한 수치해석)

  • 오세붕;최용규
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 1998
  • The behavior of axially loaded pile was analyzed by two methodologies: one is the finite difference method using load transfer curves recommended by API(1993) , and the other is the numerical analysis using the FLAC program. From both analyses, load-displacement curves and load distributions along the depth were evaluated appropriately for the measured. The analysis using the FLAC could capture the nonlinearity of load-displacement curve even for unloading and reloading cases, since the unloaded stress paths of fill layer elements occurred on the failure envelop. Futhermore, the measured load transfer curves were compared with the API recommendations and with the calculations obtained front the results of the FLAC analysis for the interpretation of the transfer behavior between the soil and the pile under axial loadings. It was concluded that the atrial behavior of open ended piles at Pusan could be evaluated by both the finite difference analysis using API load transfer curves and the numerical analysis using FLAC.

  • PDF

Fatigue Life Prediction of Automotive Rubber Component Subjected to a Variable Amplitude Loading (가변진폭하중에서의 자동차 고무 부품의 피로 수명 예측)

  • Kim, Wan-Soo;Kim, Wan-Doo;Hong, Sung-In
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.209-216
    • /
    • 2007
  • Fatigue life prediction methodology of the rubber component made of vulcanized natural rubber under variable amplitude loadings was studied. The displacement-controlled fatigue tests were conducted at different levels and the maximum Green-Lagrange strain was selected as damage parameters. A fatigue life curve of the rubber represented by the maximum Green-Lagrange strain was determined from the nonlinear finite element analysis. The transmission load history of SAE as variable amplitude loading was used to perform the fatigue life prediction. And then a signal processing of variable loading by racetrack and simplified rainflow cycle counting methods were performed. The modified miner's rule as cumulative damage summation was used. Finally, when the gate value is 30%, the predicted fatigue life of the rubber component agreed well with the experimental fatigue lives with a factor of two.

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF