• Title/Summary/Keyword: 하중분배계수

Search Result 38, Processing Time 0.027 seconds

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Simplified Load Distribution Factor Equation for the Design of Composite Steel Girder Bridges (강합성교 설계를 위한 하중분배계수 간략식)

  • Chung, Wonseok
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.131-138
    • /
    • 2005
  • The AASHTO wheel load distribution factor (LDF) equation has been with us since 1931 and has undergone minor modifications. In 1994, an entirely new procedure was introduced in the AASHTO LRFD code based on parametric studies and finite element analyses. However, this LDF equation involves a longitudinal stiffness parameter, the design of which is not initially known. Thus, an iterative procedure is required to correctly determine the LDF value. The increased level of complexity puts undue burden on the designer resulting in a higher likelihood for misinterpretation and error. In this study, based on current AASHTO LRFD framework, a new simplified equation is developed that does not require an iterative procedure. A total of 43 representative composite steel girder bridges are selected and analyzed using a finite element model.The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the proposed simplified equation is expected to streamline the determination of LDF for bridge design without sacrificing safety.

Live Load Distribution for Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Lee, Hwan-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.119-120
    • /
    • 2009
  • The Live load distribution factors currently used in the standard prestressed concrete I-girder bridge are just a reflection of overseas design standards. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section and the design strength of concrete. In this study, the major variables to determine of distribution factors were selected and an equation of live load distribution factors was developed.

  • PDF

Load Distribution Factors for Determinating Shear Force in Steel Box Girder Bridges (강상자형교의 전단력 산정을 위한 하중분배계수)

  • Song, Jea Ho;Kim, Min Wook;Kim, Il Su;Oh, Jin Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.88-97
    • /
    • 2011
  • For Korean design provisions are not equipped for skewed steel box girder bridges, when American provisions are adopted, load distribution factors different from real behavior are determinated. Furthermore the possibility of over or under estimated bridge design involves. The aim of this study is to provide more rational load distribution factor formulas based on real behavior for shear at obtuse corner of skewed steel box girder bridges. In order to accomplish the aim finite element analysis for a variety of skewed steel box girder bridge structural models is carried out, and each parameters degree of influence on wheel load distribution factors of skewed steel box girder bridges are analyzed. Then multiple regression analysis is fulfilled in order to propose formulas for determinating shear force load distribution factor of skewed steel box girder bridges.

시공중인 터널의 2차원 유한요소해석에 대한 고찰

  • 정대열
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 1994
  • 근본적으로 터널을 정확히 해석하려면 3차원 해석이 필요하다. 그러나 3차원 해석은 다루어야 할 자료가 방대하고 또한 시공 단계를 고려하는 3차원 소성해석을 정확히 하기 위해서는 슈퍼컴퓨터와 같은 컴퓨터 파워가 요구된다. 따라서 터널의 해석에서는 대개 하중분배율법을 사용하여 2차원 해석을 수행하고 있는 실정이다. 그러나 하중분배율법에 의한 2차원 해석의 결과는 선택한 하중분배율법에 의존함으로 정확한 하중분배율을 아는 것이 중요하다. 2차원 터널해석을 정확히 하기 위해서는 본문에 기술한 요건을 갖춘 프로그램의 확보, 하중분배율에 대한 정확한 평가, 측압 계수의 신중한 선택, 주위 지반의 물성에 대한 신중한 평가가 필요하다.

  • PDF

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Girder Distribution Factors for Continuous Steel Girder Bridges (강거더 연속교의 횡방향 활하중분배계수 검증)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.151-160
    • /
    • 2005
  • Current bridge design codes do not clearly specify the girder distribution factors for continuous bridges. The objective of the paper is to validate the use of code-specified girder distribution factors for the continuous steel girder bridges, and to provide a basis for recommended girder distribution factors (GDF) for interior girders, suitable for evaluation of existing continuous steel girder bridges. This paper presents the procedure and results of 3-dimensional finite element analysis that were performed on five of continuous steel girder bridges to verify girder distribution factors. The analysis results showed that the live load moment distribution at the negative moment region is very similar to those at the positive moment region in continuous steel girder bridges. It was also found that the GDF's based on the strain values are similar to those based on the deflection. GDF's based on the deflection show marginally better distribution. The analysis results confirmed that the code specified GDF's for continuous steel girder birdges are very conservative.

Wheel Load Distribution Factor for Girder Moment and Shear Force of Skew Plate Girder Bridges (판형사교 거더의 휨모멘트와 전단력에 대한 하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.33-43
    • /
    • 2005
  • The girder wheel load distribution factors stated in the Korean Bridge Specification and AASHTO Standard Specifications do not account for the effect of skewness of plate girders, and very little research has been conducted on girder wheel load distribution factors. The purpose of the study is to propose load distribution factor formulas for skew plate girder bridges which comprise various parameters through structural analysis. To confirm the validity of finite element models used in this study analytic values are compared with the field test results. From the results it should be noted that span length is not such a dominant parameter compared with others. In view of better load distribution of interior girders, skew arranged cross beams or bracing are preferable, furthemore bracing system is more effective than cross beam system. By means of regression analysis on the basis of analytic results wheel load distribution factor formulas are proposed and compared with current codes.

Distribution Factors of Curb Dead Load for New Composite Bridges (신형식 강합성 교량의 연석고정하중 분배계수)

  • Yi, Gyu-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2702-2707
    • /
    • 2010
  • The load distribution factor (LDF) values of new composite I-beam panel bridges that were subjected to dead load were investigated using three-dimensional finite element analyses with the computer program ABAQUS(2007). This study considered some design parameters such as the slab thickness, the steel-plate thickness, and the span length for design of new composite bridges. The distribution values that were obtained from these analyses were compared with those from the AASHTO Standard, AASHTO LRFD, and the equations presented by Tarhini and Frederick, and Back and Shin. For the simple application of the design, bridge engineers can use the LDF of 0.67 for the exterior girder and of 0.340 for the interior girder.