• Title/Summary/Keyword: 하중모형

Search Result 889, Processing Time 0.022 seconds

A three-dimensional finite element analysis of obturator prosthesis for edentulous maxilla (무치악 구개결손 환자를 위한 폐쇄장치의 삼차원 유한요소 분석)

  • Song, Woo-Seok;Kim, Myung-Joo;Lim, Young-Jun;Kwon, Ho-Beom
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Purpose: The purposes of this study were to evaluate the stress distributions and the displacements of obturator for edentulous maxillectomy patients and to compare them with those of complete denture using three-dimensional finite element analysis. Materials and methods: Based on the CT image of edentulous patient, three-dimensional finite element model of edentulous maxillae was constructed. Three-dimensional finite element model of edentulous maxillae with palatal defect was also fabricated. On each model, complete denture and obturator prosthesis were created. Vertical static force of 200 N was applied on the left maxillary premolar and molar region. The von Mises stress values and the displacements of models were analyzed using three-dimensional finite element analysis. Results: Maximum von Mises stress values were recorded in the cortical bones of both models. The von Mises stress value in the complete denture model was 2.73 MPa and 2.69 MPa in the obturator model. High von Mises stress values were also observed on the tissue surface of prosthesis. The maximum value of the displacement in the obturator was higher than that of complete denture. Conclusion: The obturator showed a worse result in terms of stress distribution and displacement than complete denture. In the prosthodontic rehabilitation of edentulous maxillectomy patient accurate impression procedure based on patients'anatomy and application of prosthodontic principle should be considered.

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

Load Carrying Capacity of Geosynthetic Reinforced Railway Subgrade Under Cyclic Load (토목섬유 보강재로 보강된 철도 노반의 반복하중 하중지지력 연구)

  • Hong, SeungRok;Cho, Yungyu;Choi, JungHyuk;Jeong, Yongjun;Yoo, ChungSik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2013
  • This paper studied the characteristics of bearing capacity of railway reinforced with geosynthetic against repetitive loading of train. The railway that was based on the porous pavement substructure ground and reinforced with geosynthetic was copied. In order to analyze load carrying capacity of geosynthetic, we have had 3cases experiments - in the first case, the ground was non reinforced, second case was reinforced geocell and last case was reinforced geogrid - and all of them were reduced-scale laboratory tests. The results of the analyses indicated that the bearing capacity of the reinforced geogrid increases much more than the reinforced geocell. Residual deformation of the initial cyclic load was larger than the secondary cyclic loads.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground (연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구)

  • Oh, Bum-Jin;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.215-231
    • /
    • 2011
  • In this study, the behavior of a shallow 2-arch tunnel during the excavation in the sandy ground containing vertical discontinuity plane was experimentally studied. Load transfer mechanism in the pillar caused by a 2-arch tunnel excavation was observed. The position of the vertical discontinuity plane was varied. Model tests were carried out in the normal construction sequence of 2-arch tunnel. Test results-showed that the load transfer caused by the 2-arch tunnel excavation was concentrated in the discontinuity plane, and was cut by the discontinuity plane, so no load transfer took place above the discontinuity plane. It was also shown that the effect of adjacent tunnel excavation on the pillar load and the ground deformation was greater when excavating the upper half-face of the main tunnel, more than when excavating the lower half-face.

Analysis of Time-Dependent Deformation of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로써의 EPS 지오폼의 시간의존적 변형 분석)

  • Park, Ki-Chul;Ramaraj, Babu;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2010
  • The main objective of this study is to investigate the time-dependent deformation of EPS blocks under repeated loading conditions which is the one of the flexible pavement structure. The study comprised of both the experimental work and analytical modeling in order to understand the behavior of EPS blocks under repeated loading. The analytical modeling included the selection of a suitable model for describing the deformation behavior observed under repeated loading conditions, investigating the relationship among the unit weight, deformation and applied stress, analyzing the effect of repeated load on deformation. The test results were compared with the Findley's theory and model analysis with the results of this research under repeated loading conditions. Both Modified Findley's model and the proposed model can be adopted to illustrate the deformation behavior of EPS blocks under repeated loads.

  • PDF

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Behaviour Characteristics of Single Batter Pile under Dynamic Lateral Loads (동적 수평하중에 의한 단일 경사말뚝의 거동특성)

  • Kim, Jiseong;Noh, Jeongseob;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.49-60
    • /
    • 2017
  • The purpose of this study is to investigate the behavior of a single batter pile with repeated lateral loading through model tests. Repeated loads were applied in one direction and two directions, and lateral resistance and bending moment were analyzed by varying the relative density of the ground. As a result, lateral resistance and maximum bending moment were increased in the order of Out batter, Plumb, and In batter when one-way and two-way dynamic lateral loads were applied. The depth at the maximum bending moment was more deeper with the loading. The moments at bottom layer were decreased in the order of Out batter, Plumb, and In batter but upper moments were increased with the same order. Also, various bottom and upper moments were small when the two-way dynamic lateral load was applied compared to one-way lateral load.

Earth Pressure on a Rigid wall due to Loads Condition and Distance (상재하중의 크기와 이격거리에 따른 강성벽체의 토압분포)

  • Oh, Bun-Jin;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.51-60
    • /
    • 2010
  • Earth pressure due to gravity generally increases linearly with the depth, but the distribution of earth pressure due to surface load depends on the loading condition, the ground condition, and the boundary condition. In this study, the earth pressure on a rigid wall due to the vertical surface load was measured in experiments. Rigid wall was built in the model test box, and it was filled with homogeneous sandy ground (width 30 cm, height 88 cm, length 110 cm). Rigid wall was composed of 8 segments, which were tested on the two load cells. In the tests, we observed the distribution of the earth pressure on the rigid wall depending on the vertical surface load and it's location. According to the test results, the lateral earth pressure due to the vertical surface load showed its maximum value at a constant depth and decreased with the depth, to the negligible value at the critical depth. The critical depth and the depth at which lateral earth pressure reaches its maximum were not decided by the magnitude of the vertical surface load. They were dependant on the distance from the rigid wall.

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.