• Title/Summary/Keyword: 하이브리드 시스템 모델링 및 시뮬레이션

Search Result 25, Processing Time 0.027 seconds

BlockSim++: A Lightweight Block-oriented Hierarchical Modeling and Simulation Framework for Continuous Systems (BlockSim++: 연속시스템의 계층적 모델링 및 시뮬레이션을 위한 블록기반 경량 프레임워크)

  • Song, Hae-Sang;Se, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.11-22
    • /
    • 2012
  • This paper proposes for practical engineers a lightweight modeling and simulation environment for continuous system models specified in ordinary differential equations, which are time-domain specification of such systems. We propose a block-oriented specification formalism that has two levels: one for atomic behavior and the other the structure of models. Also we provide with a simulation framework, called BlockSim++, which make models specified in the block-oriented formalism be easily translated in object-oriented program that runs with the proposed simulation framework. The proposed formalism and framework has advantage of reuse such that it can be easily integrated into application programs and heterogeneous simulators. We illustrates the usefulness of the proposed framework by a simple hybrid modeling simulation example.

An Efficient Hybrid Simulation Methodology Using the Game Physics Engine (물리엔진을 이용한 효과적인 하이브리드 시뮬레이션 방법론)

  • Lee, Wan-Bok;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • Most of the man-made systems can be modeled as a hybrid system which consists of both the high-level and the low-level component model. High level model is responsible for decision-making and the low-level one takes control of the mechanical component parts. Since the two models requires different interpretation method according to their type, analysis of a hybrid system becomes a difficult job. For the Analysis of the high-level model, methods for discrete event system models such as FSM can be used. On the contrary, numerical analysis techniques are required for the low-level continuous-time system model. Since it becomes a difficult thing for a modeller specifies and develops both the two-level models altogether, we propose an efficient hybrid simulation method which employs a game physics engine that has been widely and successfully used in the area of game industry.

Hybrid Systems Modeling and Simulation - PartI: Modeling and Simulation Methodology (하이브리드 시스템 모델링 및 시뮬레이션 - 제1부: 모델링 및 시뮬레이션 방법론)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2001
  • A hybrid system is defined as a mixture of continuous systems and discrete event systems. This paper first proposes a framework for hybrid systems modeling, called Hybrid Discrete Event System Specification (HDEVS) formalism. It then presents a method for simulators interoperation in which a continuous system simulator and a discrete event simulator are executed together in a cooperative manner. The formalism can specify a hybrid system in a way that a continuos system and a discrete event system are separately modeled by their own specification formalisms with a support of well-defined interface. We call such interface an A/E converter for analog-to- event conversion and an E/A converter for event-to-analog conversion. Simulators interoperation is based on the concept of pre-simulation in which simulation time for a continuous simulator is advanced in accordance with a discrete event simulator.

  • PDF

Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles (경전철용 연료전지 하이브리드 동력시스템 설계 및 제어)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.772-777
    • /
    • 2009
  • The development of fuel cell hybrid power system, as a next generation power system to promote clean energy which will mitigate the continued global warming, has demonstratd a significant progress in passenger vehicle applications. Also, in case of railway vehicles in non-electrified railway lines, the adoption of fuel cell hybrid power system is being studied among well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration. The simulation results demonstrate the viability of the proposed power system design and its control strategy.

Advanced High Frequency AC Propulsion System for Next Generation Electric Hybrid Vehicle

  • 김민회
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.12-25
    • /
    • 1997
  • 본 논문은 PNGV 계획에 따른 차세대 전기자동차의 개발을 위하여 고주파 교류 전력분배 시스템을 적용하여 이용할 수 있는 추진력 장치의 구현 가능성에 대한 조사 연구이다. 실행 가능한 관점에서 전력 분배와 에너지원의 결합이 쉽게 이루어 질 수 있고 변환이 가능한 여러 가지 형태의 시스템이 비교 검토되었으며, 현재 기술 수준으로 보아 가까운 장래에 실현 가능한 최적의 시스템 구성은 배터리와 내연기관엔진 및 유도전동기를 이용하는 하이브리드형이 제시되었다. 각 시스템의 원활한 전력수급과 운전특성을 위하여 단상 고주파 교류 전력분배 제어기법을 적용하였으며, 이 시스템의 타당성을 입증하기 위하여 시스템 구성에 따른 모델링과 컴퓨터 시뮬레이션을 실시하였다. 이 결과 차세대 전기자동차용으로 제시된 고주파 교류 전력분배에 의한 하이브리드형 추진력 시스템이 가능하며 운전특성도 우수함을 보여주었다.

  • PDF

A study on the co-operative modeling between discrete-event system and continuous-time system for UAV system (UAV를 위한 이산사건 및 연속시간 시스템간의 연동 모델링에 대한 연구)

  • Kang, Kwang-Chun;Choi, Sung-Do;You, Yong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The major objective of this paper is to propose a hybrid simulation environment for autonomous UAV system by integrating the continuous-time model with discrete-event model. Proposed system is able to support high autonomous behavior by combining the planner, recognizer, and controller model to deal with the HL20 AIRPLANE model. Thus, the high level decision may be efficiently issued even upon the unexpected circumstance. The proposed system model has been successfully verified by several simulation test performed on the DEVS simulation S/W environment.

  • PDF

Robust Stability Analysis of Hybrid Magnetic Bearing System (하이브리드 자기베어링 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tark, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.372-377
    • /
    • 2011
  • This paper propose the robust stability algorithm for controlling a hybrid magnetic bearing system. The control object in the magnetic bearing system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the magnetic bearing system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for hybrind magnetic bearing system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for HMB are demonstrated to visualize the feasibility of the proposed method.

Operating Characteristics of Static Var Compensator Using Hybrid Cascade 5-level PWM Inverter (하이브리드 Cascade 5-레벨 PWM 인버터를 이용한 정지형 무효전력 보상기의 동작특성)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.318-321
    • /
    • 2002
  • A static var compensator using hybrid cascade 5-level PWM inverter is presented for high voltage/high power applications. The proposed system is modelled by circuit DQ transformation, and thus an equivalent circuit is obtained which reveals the important characteristics of the system and lead to the related equations. The proposed system has advantages of hybrid structure which enhances the better utilization of power semiconductor switches, that is, both high power-low frequency switch, GTO and low power-high frequency switch, IGBT can be used in the same circuit. In this paper, circuit structure and characteristics is presented and the validity of the characteristics analysis is shown through PSIM simulation.

  • PDF

Power Characteristic Variation Simulation of Hybrid Electric Propulsion System for Small UAV (소형 무인기용 하이브리드 전기추진시스템 전력 특성변화 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1052-1059
    • /
    • 2011
  • It is conducted that power characteristic variation simulation of electric propulsion system that uses fuel cells, solar cells and a battery as power sources. Combining each power source, 400W electric propulsion system have been modeled and verified. In result, without active control logic, it is confirmed that battery's power response is faster than other power sources at starting and transient condition, fuel cell and solar cell are a major electrical power during cruise condition. After completing flight, SOC is 24.2% at the winter solstice and is 93% at the summer solstice, It is revealed that active power control for sustaining proper SOC is necessary as a securing the system safety and effective power distribution.

Modeling and State Observer Design of HEV Li-ion Battery (하이브리드 전기자동차용 리튬이온 배터리 모델링 및 상태 관측기 설계)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.360-368
    • /
    • 2008
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in the frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of a Li-ion battery indicates highly dependent of temperatures. To estimate SOC and polarization voltage, a Luenberger state observer is utilized. The P- or PI-gains of observer based on a suitable natural frequency and damping ratio is adopted for the state estimation. Satisfactory estimation accuracy of output voltage and SOC is especially obtained by a PI-gain. The feasibility of the proposed estimation method is verified through experiment under the conditions of different C-rates, SOCs and temperatures.