• Title/Summary/Keyword: 하이브리드 복합재료

Search Result 200, Processing Time 0.029 seconds

Study on the static and fatigue characteristics of the composite hybrid joint with uni-direction fiber orientation (일방향 복합재료 하이브리드 조인트의 정적 및 피로특성에 관한 연구)

  • Kim Byung Chul;Lim Tae Seong;Park Dong Chang;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.228-231
    • /
    • 2004
  • For the bolted joint of the composite structure, quasi-isotropic stacking is generally used to increase the bearing strength. For the bolted joint of uni-directional composite, the fatigue life limit of the bolted joint can be improved by applying clamping force though the static strength is still very low. In this paper, the static and fatigue characteristics of hybrid joint are investigated which can overcome the disadvantage of the bolted joint of uni-directional composite under static loading by applying adhesive joining. The experimental result shows that the static strength and fatigue life can be improved by applying clamping force to the hybrid joint and the hybrid joint is a good solution for the efficiency of the composite structures.

  • PDF

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite (섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석)

  • Lee, Bang-Yeon;Park, Jun-Hyung;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • It is important to detect fibers in the sectional image of fiber reinforced cementitious composites (FRCC), since the fiber distribution is a crucial factor to predict or evaluate the mechanical performance of FRCC. In this paper, we investigated the fluorescence characteristics of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and Polypropylene (PP) fibers used in Engineered Cementitious Composites (ECC), which is a special kind of FRCC that incorporates synthetic fibers and exhibits extremely ductile behavior in uniaxial tension, to detect each fiber according to its type. Furthermore, optimum excitation and emission wavelengths were proposed on the basis of maximum difference of Relative Fluorescence Intensity (RFI) between two types of fibers used in the hybrid ECC. Optimum threshold values to discriminate two types of fibers using statistical tools were also proposed. Finally, images of four types of fibers obtained using a fluorescence microscope are compared.

A Study on the Pultrusion of Hybrid Composite Tube (하이브리드 복합재료 튜브의 Pultrusion 성형공정연구)

  • 성대영;김태욱;이광주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.180-183
    • /
    • 2001
  • Glass fiber reinforced plastic(CFHP) tent pole fabricated by the pultrusion process with unidirectional glass fiber is two times as heavy as aluminum tent pole owing to the low specific modulus The first objective of this research is the design the high strength and light weight tent pole compete with. the second is the develope glass fiber carbon fiber hybrid tent pole pultrusion process. the third is the evaluate the mechanical properties of the hybrid tent pole compare to these of the duralumin tent pole.

  • PDF

Impact Properties of Glass/Kevlar Hybrid Composites (유리/케블라 하이브리드 구조로 강화된 복합재료의 충격 거동)

  • Joo, Ki-Ho;Ryou, Han-Sun;Chung, Kwan-Soo;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.191-194
    • /
    • 2005
  • Impact properties of glass/Kevlar hybrid composites which have 3-D braided structures were studied. Results were compared to those of composites made of only glass fibers where the same epoxy resin were used as matrix. Absorbed impact energies evaluated through the combination of the data from the impact tester and high speed camera were compared to each other. In order to see the difference between the damaged area distribution CCD camera captures were performed.

  • PDF

Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites (직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

Strength of Composite-to-Aluminum Bonding and Bolting Hybrid Joints (복합재-알루미늄 이종재료 하이브리드 체결부 강도 특성에 관한 연구)

  • Jung, Jae-Wo;Kim, Tae-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • Composite-to-aluminum joins were tested to get failure loads and modes for three types of joins; adhesive bonding, bolt fastening, and adhesive-bolt hybrid joining. Film type adhesive FM73 and paste type adhesive Cytec EA9394S were used for aluminum and composite bonding to make a double-lap joint. A digital microscope camcorder was used to monitor the failure initiation and propagation. It was found that the hybrid joining is an effective method to strengthen the joint when the mechanical fastening is stronger than the bonding as in the case of using the paste type adhesive. On the contrary, when the strength of the bolted joint is lower than the strength of the bonded joint as in the joint with the film type adhesive, the bolt joining contribute little to the hybrid joint strength.

  • PDF