• Title/Summary/Keyword: 하이브리드재료

Search Result 449, Processing Time 0.025 seconds

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

A Study on the Interfacial Crack Propagation Criterion for Two Dissimilar Isotropic Bimaterial by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드 법에 의한 두 상이한 등방성 이종재료의 계면균열전파 기준에 관한 연구)

  • Tche, Konstantin;Hawong, Jai-Sug;Shin, Dong-Chul;Nam, Sung-Su;Nam, Jeong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1216-1221
    • /
    • 2003
  • The specimen materials used in this research is bimaterial. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic hybrid method was introduced and it's validity had been assured. The static photoelastic hybrid method was applied to the Minimum Strain Energy Density Criterion, the Maximum Tangential Stress Criterion and Mode Mixity. Crack propagation criterion by the static photoelastic hybrid method was introduced and it was applied to the above various failure theories. Comparing the experimental initial angle of crack propagation with the theoretical initial angle of crack propagation from the various failure criterions. And then the optimal crack propagation criterion was suggested and it's validity was assured.

  • PDF

Mechanical Characteristics of Hybrid Fiber Reinforced Composite Rebar (하이브리드 섬유강화 복합재료 리바의 기계적 특성)

  • HAW GIL-YOUNG;AHN DONG-GUE;LEE DONG-GI
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.57-63
    • /
    • 2005
  • The objective of this research is to investigate the mechanical characteristics of the hybrid fiber reinforced composite rebar, which is manufactured from a braidtrusion process. Braidtrusion is a direct composite fabrication technique, utilizing in-line brading and the pultrusion process. hz order to obtain the mechanical behavior of the glass fiber, carbon fiber, and kevlar fiber, the tensile tests are carried out. The results of the fibers are compared with that of steel. Hybrid rebar specimens with various diameters, ranging from model size (3 mm) to full-scale size (9.5 mm), and various cross sections, such as solid and hollow shape, have been manufactured from the braidtrusion process. The tensile and bending tests for the case of the hybrid rebar, the conventional GFRP rebar, and the steel bar have been carried out. The results of the experiments show that the hybrid rebar is superior to the conventional GFRP rebar and the steel bar, from the viewpoint of tensile and bending characteristics.

UV Blocking Coatings by Combination of Organic-inorganic Hybrid Materials and UV absorbers (유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅)

  • Yu, Dong-Sik;Lee, Ji-Ho;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1296-1301
    • /
    • 2006
  • The human eye is exposed to UV and visible light. UV light exposure becomes harmful to the eye. Protection for eyes should block all ultraviolet rays. In our study, organic-inorganic hybrid materials have been applied to UV blocking coatings with UV absorbing materials on transparent plastics. The optical properties of UV blocking coatings were investigated in PMMA, CR 39 and PC substrates. In case of all UV absorbers, the transmission of UV light decreases with an increased amount of absorber. Our findings indicate that PMMA significantly reduced the transmission of UV radiation, CR 39 showed moderate decrease, while UV-uncoated PC had some UV blocking properties. Adhesion, hot water resistance and chemical resistance of the UV-coated CR 39 lenses were good. Pencil hardness were 4H. Abrasion resistance were poor.

  • PDF

Growth and characterization of ZnO hybrid structure grown by MOCVD (MOCVD로 성장된 ZnO 하이브리드 구조의 합성과 특성 분석)

  • Choi, Mi-Gyung;Park, Ji-Woong;Kim, Joo-Hui;Min, Hae-Jung;Heo, Han-Na;Kim, Dong-Chan;Kong, Bo-Hyun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.420-420
    • /
    • 2007
  • ZnO 나노막대는 산화물 반도체로서 넓은 밴드캡 (3.37eV)을 가진 반도체이며, 테라급의 전계 효과 트랜지스터(FET), 대기오염물질 모니터링 센서, 태앙전지용 전극, UV 발광소자, 전계방출 디스플레이의 팀 등 나노기술 전반에 활용해 최근 각광을 받고 있는 물질이다. 최근 디바이스 응용의 효율을 높이기 위한 방편으로 나노막대에서 박막으로의 연구가 활발하다. 본 실험은 MOCVD률 이용하여 p-si 기판위에 나노막대를 성장시킨 후 압력 및 온도 등의 공정변수를 조절하여 나노막대에서 박막으로 성장형태를 변화시켰다. SEM으로 1 차원 나노막대에서 2차원의 나노박막으로 성장이 된 ZnO 하이브리드 구조를 확인할 수 있었다. 또, PL장비를 이용해 ZnO의 UV영역의 파장을 확인할 수 있었다.

  • PDF

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

Recent Research Trend of Thin Film Battery (최근 박막 전지 연구 동향)

  • Yoon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.4-4
    • /
    • 2008
  • 소형화, 고신뢰성 그리고 고안정성을 갖는 차세대 전자, 통신용 및 의료용 전자 소자에 대한 요구의 증대에 따라 이의 개발이 가속화되고 있다. 이러한 개발에 있어서 핵심적 문제의 하나는 소자 구동을 위한 초소형 고출력 동력원의 개발이다. 이러한 요구 조건에 가장 잘 부합되는 초소형 동력원은 재료공학, 박-후막 공정 및 전기화학기술을 도입하여 제작되는 박막 전지이다. 박막 전지 기술은 재료공학기술, 나노 고정 기술, 박-후막제조기술, 전기화학기술, 마이크로공정기술, 반도체기술 및 집적화를 위한 시스템화 기술을 종합해야하는 기술로 전기, 전자 분야의 급속한 발전과 함께 진행되고 있는 통신, 전자기기 및 의료기기의 초소형화를 가능하게 하는 특징을 가지고 있다. 이 기술은 이차전지(또는 경우에 따라서는 박막형 슈퍼캐패시터와 하이브리드화) 등을 효과적으로 소형, 고출력 및 고안정화하는 기술이 핵심이며 박-후막형 전지의 최적 구동을 위한 시스템 및 나노 재료 기술에 의해서 구현되는 신 개념의 마이크로 파워 소스이다. 이번 발표에서는 박막 전지의 개발 배경과 몇 가지의 기술적 접근의 예를 제시하고자 한다. 특히 최근에는 박막 전지의 개발은 재료, 공정(후-박막 기술) 및 평가 기술 분야에 서의 기여가 매우 중요하다는 것을 인식하게 되었으며 이러한 과정에서 박막 전지의 개발은 기술적인 면에서 단순히 특정 단일 분야의 주도가 아닌 기술간 융합적 접근(예를 들어 재료와 반도체 공정 또는 이온 재료와 전자 재료 간의 융합)의 필요성이 매우 높아지고 있음을 제시하고자 한다.

  • PDF

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure (강 뼈대 구조물의 단자유도 하이브리드 동적 실험)

  • Kim, Se-Hoon;Na, Ok-Pin;Kim, Sung-Il;Lee, Jae-Jin;Kang, Dae-Hung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2012
  • The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.