• Title/Summary/Keyword: 하부구조물

Search Result 490, Processing Time 0.027 seconds

Structural Behavior of Steel Wire Truss Deck with Continuous Lattices to the Longitudinal Direction (길이방향으로 연속된 래티스를 가지는 철선 트러스데크의 구조 거동)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan;Cho, Soon Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • A truss deck system that has replaced the slab form conventional method has become widely used in the construction of reinforced concrete structures as well as steel structures. The current commercial products, however, have some problems. The discontinuity between the lattice wires on the joint of the bottom wire induces vierendeel behavior, which increases the deflection of the system. In this research, a new truss deck system with continuous lattice wires on the level of the bottom wire was developed to reduce the system's vierendeel behavior and to improve its deformation capacity. To investigate the system's structural behavior, an experimental test and an analysis were performed. The main parameters of the test and analysis were the longitudinal shape and spacing of the lattices. To simulate the loading condition in the construction field, uniform construction loads were directly applied on the deck plates of the analysis model and the test specimens. The results of such analysis and test revealed that the longitudinal shape of the lattice wires is a major factor affecting the structural behavior of a steel wire truss deck. Thus, continuous lattice wires could result in decreased vierendeel behavior in the steel wire truss deck. It was also found that the truss deck system with lattices spaced longer than in the conventional products could be effectively used without increasing the member stresses.

Geophysical Imaging of Alluvial Water Table and the underlying Layers of Weathered and Soft Rocks (충적층 지하수면 및 그 하부의 풍화암/연암의 경계면 파악을 위한 복합 지구물리탐사)

  • Ju, Hyeon-Tae;Lee, Chul-Hee;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Although geophysical methods are useful and generally provide valuable information about the subsurface, it is important to recognize their limitations. A common limitation is the lack of sufficient contrast in physical properties between different layers. Thus, multiple methods are commonly used to best constrain the physical properties of different layers and interpret each section individually. Ground penetrating radar (GPR) and shallow seismic reflection (SSR) methods, used for shallow and very shallow subsurface imaging, respond to dielectric and velocity contrasts between layers, respectively. In this study, we merged GPR and SSR data from a test site within the Cheongui granitic mass, where the water table is ~3 m deep all year. We interpreted the data in combination with field observations and existing data from drill cores and well logs. GPR and SSR reflections from the tops of the sand layer, water table, and weathered and soft rocks are successfully mapped in a single section, and they correlate well with electrical resistivity data and SPS (suspension PS) well-logging profiles. In addition, subsurface interfaces in the integrated section correlate well with S-wave velocity structures from multi-channel analysis shear wave (MASW) data, a method that was recently developed to enhance lateral resolution on the basis of CMP (common midpoint) cross-correlation (CMPCC) analysis.

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Pile and adjacent ground behaviors depending on horizontal offset between pile and tunnel subjected to horizontally loaded single pile (수평하중을 받는 단일 말뚝 하부 터널굴착 시 말뚝-터널 수평이격거리에 따른 말뚝 및 인접 지반 거동)

  • Ahn, Ho-Yeon;Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.685-703
    • /
    • 2017
  • Recently, as the number of high-rise building and earthquake occurrence are increasing, it is more important to consider horizontal load such as wind and seismic loads, earth pressure, for the pile foundation. Also, development of underground space in urban areas is more demanded to meet various problem induced by growing population. Many studies on pile subjected to horizontal load have been conducted by many researchers. However, research regarding interactive behavior on pile subjected to horizontal load with tunnel are rare, so far. In this study, therefore, study on the behaviors of ground and horizontal and vertical loads applied to single pile was carried out using laboratory model test and numerical analysis. The pile axial force and ground deformation were investigated according to offset between pile and tunnel (0.0D, 1.0D, 2.0D: D = tunnel diameter). At the same time, close range photogrammetry was used to measure displacement of underground due to tunnelling during laboratory model test. The results from numerical analysis were compared to that from laboratory model test.

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석)

  • Nam, Kyoung-Min;Choi, Min-ki;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.231-248
    • /
    • 2017
  • Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

A study on the structural safety of middle slab in double deck tunnel under live loads (활하중에 대한 복층터널 슬래브의 구조적 안전성에 관한 연구)

  • Kim, Tae Kyun;Kim, Se Kwon;Kim, Hyun Jun;Kim, Chang Young;Yoo, Wan Kyu;Hwang, Sung-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel cross-section varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.