• Title/Summary/Keyword: 하단 게이트 전압

Search Result 36, Processing Time 0.023 seconds

Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 전기적 상호작용에 대한 연구)

  • Jang, Ho-Yeong;Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.614-615
    • /
    • 2016
  • I studied electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET). If the thickness of Inter Layer Dielectric (ILD) between top JLFET and bottom JLFET is less than 50nm, current-voltage characteristic of top JLFET is rapidly changed by the gate voltage of bottom JLFET. Therefore, you have to consider about the electrical interaction according to the thickness between top JLFET and bottom JLFET in M3D-INV.

  • PDF

Threshold Voltage Movement for Channel Doping Concentration of Asymmetric Double Gate MOSFET (도핑농도에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee;Lee, jongin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.748-751
    • /
    • 2014
  • This paper has analyzed threshold voltage movement for channel doping concentration of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is generally fabricated with low doping channel and fully depleted under operation. Since impurity scattering is lessened, asymmetric DGMOSFET has the adventage that high speed operation is possible. The threshold voltage movement, one of short channel effects necessarily occurred in fine devices, is investigated for the change of channel doping concentration in asymmetric DGMOSFET. The analytical potential distribution of series form is derived from Possion's equation to obtain threshold voltage. The movement of threshold voltage is investigated for channel doping concentration with parameters of channel length, channel thickness, oxide thickness, and doping profiles. As a result, threshold voltage increases with increase of doping concentration, and that decreases with decrease of channel length. Threshold voltage increases with decrease of channel thickness and bottom gate voltage. Lastly threshold voltage increases with decrease of oxide thickness.

  • PDF

A Study on Breakdown Voltage Improvement of the Trench IGBT by Extending a Gate Oxide Region beneath the Trench Gate (트렌치 케이트 하단의 게이트 산화막 확장을 통한 트렌치 IGBT의 항복전압 향상에 대한 연구)

  • Lee, Jae-In;Kyoung, Sin-Su;Choi, Jong-Chan;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.74-75
    • /
    • 2008
  • TIGBT has some merits which are lower on-state voltage drop and smaller cell pitch, but also has a defect which is relatively lower breakdown voltage in comparison with planar IGBT. This lower breakdown voltage is due to the electric field which is concentrated on beneath the vertical gate. Therefore in this paper, new trench IGBT structure is proposed to improve breakdown voltage In the new proposed structure, a narrow oxide beneath the trench gate edge where the electric field is concentrated is extended into rectangular shape to decrease the electric field. As a result, breakdown voltage is improved to 23%.

  • PDF

AC Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 AC 특성에 대한 연구)

  • Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.529-530
    • /
    • 2017
  • Electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET) was investigated. Depending on the thickness of Inter Layer Dielectirc (ILD) between top and bottom JLFETs, $N_{gate}-N_{gate}$ capacitance and transconductance $g_m$ are changed by the gate voltage of bottom JLFET. Therefore, when using a stacked structure with the ILD below tens nm, AC electrical coupling between two transistors in M3D-INV should be considered.

  • PDF

2500V IGBTs with Low on Resistance and Faster Switching Characteristic (낮은 온-저항과 빠른 스위칭 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Koo, Yong-Seo;Won, Jong-Il;Kwon, Jong-Ki;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) based on Non Punch Through(NPT) IGBT structure for power switching device. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The added n+ diffusion of the proposed device ensure device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure. But, added n+ region can reduce th breakdown voltage and latching current density of the proposed device due to its high doping concentration. This problems can be overcome by using diverter on the right side of the device. In the simulation results, turn-off time of the proposed device is 0.3us and the on-state voltage drop is 3V. The results show that the proposed device has superior characteristic than conventional structure.

  • PDF

A novel IGBT with improved electrical characteristics (향상된 전기적 특성을 갖는 IGBT에 관한 연구)

  • Koo, Yong-so
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2013
  • In this paper, we tried different two approach to improve the performance of the IGBT. The first approach is that adding N+ region beside P-base in the conventional IGBT. It can make the conventional IGBT to get faster turn-off time and lower conduction loss. The second approach is that adding P+ region on right side under gate to improve latching current of conventional IGBT. The device simulation results show improved on-state, latch-up and switching characteristics in each structure. The first one was presented lower voltage drop(3.08V) and faster turn-off time(3.4us) than that of conventional one(3.66V/3.65us). Also, second structure has higher latching current(369A/?? ) that of conventional structure. Finally, we present a novel IGBT combined the first approach with second one for improved trade-off characteristic between conduction and turn-off losses. The proposed device has better performance than conventional IGBT.