협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.
협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.
색인전문가에 의해 분류된 웹문서들을 통계적 자질 선택방법으로 자질을 추출하여 클라스터링을 해 보면, 자질 선택에 사용된 데이터셋에 따라 성능과 결과가 다르게 나타난다. 그 이유는 많은 웹 문서에서 문서의 내용과 관계없는 단어들을 많이 포함하고 있어 문서의 특정을 나타내는 단어들이 상대적으로 잘 두드러지지 않기 때문이다. 따라서 클러스터링 성능을 향상시키기 위해 이런 부적절한 자질들을 제거해 주어야 한다. 따라서 본 논문에서는 자질 선택에서 자질의 문서군별 자질값뿐만 아니라, 문서군별 자질값의 분포와 정도, 자질의 출현여부와 빈도를 고려한 자질 필터링 알고리즘을 제시한다. 알고리즘에는 (1) 단위 문서 내 자질 필터링 알고리즘(FFID : feature filtering algorithm in a document), (2) 전체 데이터셋 내 자질 필터링 알고리즘(FFIM : feature filtering algorithm in a document matrix), (3)FFID와 FFIM을 결합한 방법(HFF:a hybrid method combining both FFID and FFIM) 을 제시한다. 실험은 단어반도를 이용한 자질선택 방법, 문서간 동시-링크 정보의 자질확장, 그리고 위에서 제시한 3가지 자질 필터링 방법을 사용하여 클러스터링 했다. 실험 결과는 데이터셋에 따라 조금씩 차이가 나지만, FFID보다 FFIM의 성능이 좋았고, 또 FFID와 FFIM을 결합한 HFF 결과가 더 나은 성능을 보였다.
자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.
영상처리는 자동화, 인공지능 시스템에서 물체 추적, 객체 인식 및 분류와 같은 중요한 부분을 담당하고 있으며, IoT 기술과 자동화의 관심이 높아짐에 따라 중요성이 강조되고 있다. 하지만 영상의 경계선과 같이 세밀한 데이터가 요구되는 시스템에서는 정밀한 잡음제거 알고리즘이 요구되고 있으나, 기존 알고리즘은 필터링 과정에서 블러링 현상이 강하게 나타나는 단점을 가지고 있다. 따라서 본 논문에서는 필터링 과정의 정보손실을 최소화하기 위해 화소값 분포패턴에 기반한 필터링 알고리즘을 제안한다. 제안한 알고리즘은 입력영상의 화소값에 대해 이웃한 화소값의 분포패턴을 구한다. 그리고 분포패턴을 바탕으로 가중치 마스크를 계산하며, 필터링 마스크에 적용하여 최종출력을 계산한다. 제안한 알고리즘은 기존 방법에 비해 잡음제거 특성이 우수하였으며, 블러링 현상을 최소화하며 영상을 복원하였다.
추천 시스템을 위한 분석방법들 가운데 협업 필터링은 데이터 분석에 기반한 추천 시스템에서 주요 대표적 방법이다. 일반적 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾으며, 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.
본 논문에서 제안하는 실내 위치기반서비스는 움직이는 사용자를 대상으로 하였다. 실외환경에서 GPS를 이용한 위치 측위는 정확하지만 실내 환경에서는 위치 측위가 부정확하고 어려움이 있다. 이를 극복하기 위해 Wi-Fi, Zigbee, 블루투스 등의 무선 통신 기술을 기반으로 위치 측위를 위한 다양한 기술들의 연구가 이루어지고 있다. 본 논문에서는 비콘의 송출 신호인 RSSI 값을 이용하여 거리에 따른 RSSI 값을 측정하여 데이터 베이스화하였다. 원거리에서 측정되는 RSSI 값의 오차를 줄이기 위해 RSSI 평균 필터링과 RSSI Feedback 필터링에 대한 계산 값을 산출 적용하였다. 평균 필터링과 계수 값을 0.5로 설정한 Feedback 필터링을 통하여 불규칙하고 높은 RSSI 값이 다소 감소하는 것을 확인하였으며, 거리계산 보정 알고리즘을 통해 거리가 증가함에 따른 오차의 범위가 감소하는 것을 확인하였다. 최종적으로 RSSI 측정결과 필터링을 이용해 불안정한 신호를 보정하고 오차 범위를 줄이기 위해 거리계산 보정 알고리즘을 시행하였다.
본 논문에서는 거리계산 보정 알고리즘을 이용하여 거리 인식 측정을 LED 디밍제어를 통해 구현하였다. 원거리에서 측정되는 RSSI 값의 오차를 줄이기 위해 RSSI 평균 필터링과 Feedback 필터링에 대한 계산 값을 산출 적용시켰다. 평균 필터링을 통한 RSSI 값과 Feedback, 필터링의 계수 값을 0.5로 설정하여 측정한 RSSI 값이 일반적인 측정에 비해 최대 -61dBm에서 최소 -52.5dBm으로 약 -2dBm에서 -6dBm 정도로 불규칙하고 높은 값이 다소 감소하는 것을 확인하였다. 정확도 향상을 위한 거리계산 보정 알고리즘을 응용하였으며 이를 통하여 거리가 증가함에 따라 오차의 범위가 감소하는 것을 확인하였다. 최종적으로 RSSI 측정결과 필터링을 이용해 불안정한 신호를 보정하였으며, 오차 범위를 줄이기 위해 거리계산 보정 알고리즘을 적용 시행하였다. 또한 거리판별과 신호의 안정도를 표시하기 위해 LED로 RGB 색상을 구현하였다.
무수히 많은 정보 중에서 특정 사용자에게 가장 유용할 것으로 판단되는 정보를 추천하여 제공함으로써 특정 사용자의 편의를 돕는 시스템이 추천시스템이다. 이러한 추천시스템에 성공적으로 적용된 알고리즘이 협력적 필터링이며 이것은 다른 사용자로부터 먼저 평가된 웹 문서를 제공받아 이를 축적하고 다시 사용자에게 환원하는 알고리즘이다. 하지만 이 알고리즘은 초기평가, 희소성, 확장성 둥의 문제점을 내포하고 있다. 따라서 본 논문은 이러한 문제점을 해결하고 성능 향상을 하기 위해 적용된 개인화 추천시스템 관련 최신 알고리즘들을 비교하고 분석한 결과를 제시한다. 이를 위해 먼저 최근에 발표된 협력적 필터링과 최근접 이웃 알고리즘, 인공 지능기술을 이용한 알고리즘, 군집화 알고리즘 둥 각각에 대한 기술적 분석 결과를 수행한다. 그런 후 이들 다양한 알고리즘들의 조합을 통한 성능 향상 결과에 대한 비교분석과 각각의 조합에 대한 장단점 분석 결과도 또한 제시한다.
한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
/
pp.362-368
/
2001
본 논문에서는 고객의 특성을 고려한 최적의 추천시스템을 개발하기 위하여 기존의 인구통계학적 특성에 따른 협동적필터링 기법의 추천 효율을 비교 분석하였다. 비디오에 대한 사용자 평가 값과 예측 값간의 추천 효율에 대한 비교실험을 통하여 상품에 대한 단순한 선호도만을 고려한 기존의 협동적필터링 방법에 의한 추천시스템의 문제점을 개선하여 추천된 상품이나 콘텐츠에 대한 개인별 추천 효율을 향상시키기 위한 모델을 제시하였다. 본 연구 결과를 이용하여 인터넷 비즈니스 분야에서 활발하게 도입되고 있는 eCRM 시스템에서 가장 중요한 요소인 고객들의 인구통계학적인 다양한 특성을 고려한 협동적필터링 기반의 추천시스템을 개발할 수 있으리라 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.