• 제목/요약/키워드: 필터링 알고리즘

검색결과 856건 처리시간 0.025초

특정 도메인을 위한 추천 알고리즘 비교에 관한 연구 (Comparison of Recommendation Algorithms for Specific Domains)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.482-483
    • /
    • 2019
  • 협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.

  • PDF

도메인 기반 추천 알고리즘 비교 연구 (Comparison of Recommendation Algorithms for Specific Domains)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.563-564
    • /
    • 2021
  • 협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.

  • PDF

웹 문서 클러스터링에서의 자질 필터링 방법 (Feature Filtering Methods for Web Documents Clustering)

  • 박흠;권혁철
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.489-498
    • /
    • 2006
  • 색인전문가에 의해 분류된 웹문서들을 통계적 자질 선택방법으로 자질을 추출하여 클라스터링을 해 보면, 자질 선택에 사용된 데이터셋에 따라 성능과 결과가 다르게 나타난다. 그 이유는 많은 웹 문서에서 문서의 내용과 관계없는 단어들을 많이 포함하고 있어 문서의 특정을 나타내는 단어들이 상대적으로 잘 두드러지지 않기 때문이다. 따라서 클러스터링 성능을 향상시키기 위해 이런 부적절한 자질들을 제거해 주어야 한다. 따라서 본 논문에서는 자질 선택에서 자질의 문서군별 자질값뿐만 아니라, 문서군별 자질값의 분포와 정도, 자질의 출현여부와 빈도를 고려한 자질 필터링 알고리즘을 제시한다. 알고리즘에는 (1) 단위 문서 내 자질 필터링 알고리즘(FFID : feature filtering algorithm in a document), (2) 전체 데이터셋 내 자질 필터링 알고리즘(FFIM : feature filtering algorithm in a document matrix), (3)FFID와 FFIM을 결합한 방법(HFF:a hybrid method combining both FFID and FFIM) 을 제시한다. 실험은 단어반도를 이용한 자질선택 방법, 문서간 동시-링크 정보의 자질확장, 그리고 위에서 제시한 3가지 자질 필터링 방법을 사용하여 클러스터링 했다. 실험 결과는 데이터셋에 따라 조금씩 차이가 나지만, FFID보다 FFIM의 성능이 좋았고, 또 FFID와 FFIM을 결합한 HFF 결과가 더 나은 성능을 보였다.

확장된 Relief-F 알고리즘을 이용한 소규모 크기 문서의 자동분류 (Document Classification of Small Size Documents Using Extended Relief-F Algorithm)

  • 박흠
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.233-238
    • /
    • 2009
  • 자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.

화소값 분포패턴과 가중치 마스크를 사용한 AWGN 제거 알고리즘 (Noise Removal Filter Algorithm using Spatial Weight in AWGN Environment)

  • 천봉원;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.428-430
    • /
    • 2022
  • 영상처리는 자동화, 인공지능 시스템에서 물체 추적, 객체 인식 및 분류와 같은 중요한 부분을 담당하고 있으며, IoT 기술과 자동화의 관심이 높아짐에 따라 중요성이 강조되고 있다. 하지만 영상의 경계선과 같이 세밀한 데이터가 요구되는 시스템에서는 정밀한 잡음제거 알고리즘이 요구되고 있으나, 기존 알고리즘은 필터링 과정에서 블러링 현상이 강하게 나타나는 단점을 가지고 있다. 따라서 본 논문에서는 필터링 과정의 정보손실을 최소화하기 위해 화소값 분포패턴에 기반한 필터링 알고리즘을 제안한다. 제안한 알고리즘은 입력영상의 화소값에 대해 이웃한 화소값의 분포패턴을 구한다. 그리고 분포패턴을 바탕으로 가중치 마스크를 계산하며, 필터링 마스크에 적용하여 최종출력을 계산한다. 제안한 알고리즘은 기존 방법에 비해 잡음제거 특성이 우수하였으며, 블러링 현상을 최소화하며 영상을 복원하였다.

  • PDF

협업 필터링 기반 추천 알고리즘 연구 (Collaborative filtering-based recommendation algorithm research)

  • 이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.655-656
    • /
    • 2022
  • 추천 시스템을 위한 분석방법들 가운데 협업 필터링은 데이터 분석에 기반한 추천 시스템에서 주요 대표적 방법이다. 일반적 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾으며, 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.

  • PDF

RSSI 측정결과 필터링을 이용한 거리계산 보정 알고리즘에 관한 연구 (A Study on Distance Calculation Revision Algorithm using the Filtering of RSSI Measurement Results)

  • 김지성;김용갑
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-31
    • /
    • 2017
  • 본 논문에서 제안하는 실내 위치기반서비스는 움직이는 사용자를 대상으로 하였다. 실외환경에서 GPS를 이용한 위치 측위는 정확하지만 실내 환경에서는 위치 측위가 부정확하고 어려움이 있다. 이를 극복하기 위해 Wi-Fi, Zigbee, 블루투스 등의 무선 통신 기술을 기반으로 위치 측위를 위한 다양한 기술들의 연구가 이루어지고 있다. 본 논문에서는 비콘의 송출 신호인 RSSI 값을 이용하여 거리에 따른 RSSI 값을 측정하여 데이터 베이스화하였다. 원거리에서 측정되는 RSSI 값의 오차를 줄이기 위해 RSSI 평균 필터링과 RSSI Feedback 필터링에 대한 계산 값을 산출 적용하였다. 평균 필터링과 계수 값을 0.5로 설정한 Feedback 필터링을 통하여 불규칙하고 높은 RSSI 값이 다소 감소하는 것을 확인하였으며, 거리계산 보정 알고리즘을 통해 거리가 증가함에 따른 오차의 범위가 감소하는 것을 확인하였다. 최종적으로 RSSI 측정결과 필터링을 이용해 불안정한 신호를 보정하고 오차 범위를 줄이기 위해 거리계산 보정 알고리즘을 시행하였다.

거리계산 보정 알고리즘을 이용한 LED 거리 인식 측정에 관한 연구 (A Study on LED Distance Recognition Measure Using Distance Measurement Correction Algorithm)

  • 김지성;정대철;김용갑
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.63-68
    • /
    • 2017
  • 본 논문에서는 거리계산 보정 알고리즘을 이용하여 거리 인식 측정을 LED 디밍제어를 통해 구현하였다. 원거리에서 측정되는 RSSI 값의 오차를 줄이기 위해 RSSI 평균 필터링과 Feedback 필터링에 대한 계산 값을 산출 적용시켰다. 평균 필터링을 통한 RSSI 값과 Feedback, 필터링의 계수 값을 0.5로 설정하여 측정한 RSSI 값이 일반적인 측정에 비해 최대 -61dBm에서 최소 -52.5dBm으로 약 -2dBm에서 -6dBm 정도로 불규칙하고 높은 값이 다소 감소하는 것을 확인하였다. 정확도 향상을 위한 거리계산 보정 알고리즘을 응용하였으며 이를 통하여 거리가 증가함에 따라 오차의 범위가 감소하는 것을 확인하였다. 최종적으로 RSSI 측정결과 필터링을 이용해 불안정한 신호를 보정하였으며, 오차 범위를 줄이기 위해 거리계산 보정 알고리즘을 적용 시행하였다. 또한 거리판별과 신호의 안정도를 표시하기 위해 LED로 RGB 색상을 구현하였다.

개인화 추천시스템의 성능 향상 적용 알고리즘 분석 (An Analysi s of Performance Improvement Algorithm for Personalized Recommender System)

  • 윤수진;윤희병
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.181-184
    • /
    • 2005
  • 무수히 많은 정보 중에서 특정 사용자에게 가장 유용할 것으로 판단되는 정보를 추천하여 제공함으로써 특정 사용자의 편의를 돕는 시스템이 추천시스템이다. 이러한 추천시스템에 성공적으로 적용된 알고리즘이 협력적 필터링이며 이것은 다른 사용자로부터 먼저 평가된 웹 문서를 제공받아 이를 축적하고 다시 사용자에게 환원하는 알고리즘이다. 하지만 이 알고리즘은 초기평가, 희소성, 확장성 둥의 문제점을 내포하고 있다. 따라서 본 논문은 이러한 문제점을 해결하고 성능 향상을 하기 위해 적용된 개인화 추천시스템 관련 최신 알고리즘들을 비교하고 분석한 결과를 제시한다. 이를 위해 먼저 최근에 발표된 협력적 필터링과 최근접 이웃 알고리즘, 인공 지능기술을 이용한 알고리즘, 군집화 알고리즘 둥 각각에 대한 기술적 분석 결과를 수행한다. 그런 후 이들 다양한 알고리즘들의 조합을 통한 성능 향상 결과에 대한 비교분석과 각각의 조합에 대한 장단점 분석 결과도 또한 제시한다.

  • PDF

인구통계학적 특성에 따른 협동적필터링 알고리즘의 추천 효율 분석 (An Analysis of Recommendation Rate for Collaborative Filtering Algorithm based-on Demographic Information)

  • 황성희;김영지;이미희;우용태
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.362-368
    • /
    • 2001
  • 본 논문에서는 고객의 특성을 고려한 최적의 추천시스템을 개발하기 위하여 기존의 인구통계학적 특성에 따른 협동적필터링 기법의 추천 효율을 비교 분석하였다. 비디오에 대한 사용자 평가 값과 예측 값간의 추천 효율에 대한 비교실험을 통하여 상품에 대한 단순한 선호도만을 고려한 기존의 협동적필터링 방법에 의한 추천시스템의 문제점을 개선하여 추천된 상품이나 콘텐츠에 대한 개인별 추천 효율을 향상시키기 위한 모델을 제시하였다. 본 연구 결과를 이용하여 인터넷 비즈니스 분야에서 활발하게 도입되고 있는 eCRM 시스템에서 가장 중요한 요소인 고객들의 인구통계학적인 다양한 특성을 고려한 협동적필터링 기반의 추천시스템을 개발할 수 있으리라 기대한다.

  • PDF