• Title/Summary/Keyword: 필름 선량계

Search Result 60, Processing Time 0.023 seconds

Study on Research for Reducing Radiation Dose of Head and Neck for Cephalometric Radiography System (두부규격방사선촬영장치의 두경부 피폭 저감에 대한 연구)

  • OH, Yoonjin;Shin, Jae-won;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.291-298
    • /
    • 2016
  • Recently, the interest in the orthodontic treatment for children is increased by a rise in national income level. The number of cephalometric radiography that could diagnose a malocclusion and malposition between teeth and jawbone increased. It required attention to radiation exposure, because the subject of dental examination is children which are more sensitive to radiation and the head and neck, the object of that include radiation sensitive organ such as the thyroid, bone marrow, eyes, salivary gland, and so on. In this study, we measured two-dimensional dose distribution in cephalometric radiography system (VATEC Pax-400C) using Agfa CP-G Plus film and MagicMax Dosimeter, and calculated radiation organ dose of head and neck through MCNPX simulation. And then we designed a radiation protective device to decrease radiation dose. The dose distribution of the cephalometric radiography system irradiated the head and neck overall as well as the oral and maxillofacial parts. The radiation organ dose calculated that thyroid, oesophagus and eyes are irradiated high, and the radiation organ dose decreased about 70 ~ 80% by the application of the radiation protective device. The results of this study will be used construction of database for dental radiation exposure and research of reducing radiation dose.

A Pilot Research for Real-Time Specific Patient Quality Assurance Using the Hybrid Optimized Vmat Phantom (Hovp) in Volume Modulated Arc Therapy (체적변조회전치료에서 Hybrid Optimized VMAT Phantom (HOVP)을 이용한 실시간 환자 맞춤형 정도관리를 위한 예비연구)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Kum-Bae;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Kee;Cho, Kwang-Hwan;Lee, Sang-Hoon;Lee, Suk;Shim, Jang-Bo;Shin, Dong-Oh;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.206-215
    • /
    • 2011
  • The purpose of this was to investigate the measurement of fluence dose map for the specific patient quality assurance. The measurement of fluence map was performed using 2D matrixx detector. The absorbed dose was measured by a glass detector, Gafchromic film and ion chamber in Hybrid Optimized VMAT Phantom (HOVP). For 2D Matrixx, the results of comparison were average passing rate $85.22%{\pm}1.7$ (RT_Target), $89.96%{\pm}2.15$ (LT_Target) and $95.14%{\pm}1.18$ (G4). The dose difference was $11.72%{\pm}0.531$, $-11.47%{\pm}0.991$, $7.81%{\pm}0.857$, $-4.14%{\pm}0.761$ at the G1, G2, G3, G4. In HOVP, the results of comparison for film were average passing rate (3%, 3 mm) $93.64%{\pm}3.87$, $90.82%{\pm}0.99$. We were measured an absolute dose in steep gradient area G1, G2, G3, G4 using the glass detector. The difference between the measurement and calculation are 8.3% (G1), -5.4% (G2), 6.1% (G3), 7.2% (G4). The using an Ion-chamber were an average relative dose error $-1.02%{\pm}0.222$ (Rt_target), $0.96%{\pm}0.294$ (Lt_target). Though we need a more study using a transmission detector. However, a measurement of real-time fluence map will be predicting a dose for real-time specific patient quality assurance in volume modulated arc therapy.

Evaluation of a Water-based Bolus Device for Radiotherapy to the Extremities in Kaposi's Sarcoma Patients (사지에 발병한 카포시육종의 방사선치료를 위한 물볼루스 기구의 유용성 고찰)

  • Ahn, Seung-Kwon;Kim, Yong-Bae;Lee, Ik-Jae;Song, Tae-Soo;Son, Dong-Min;Jang, Yung-Jae;Cho, Jung-Hee;Kim, Joo-Ho;Kim, Dong-Wook;Cho, Jae-Ho;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Purpose: We designed a water-based bolus device for radiation therapy in Kaposi's sarcoma. This study evaluated the usefulness of this new device and compared it with the currently used rice-based bolus. Materials and Methods: We fashioned a polystyrene box and cut a hole in order to insert patient's extremities while the patient was in the supine position. We used a vacuum-vinyl based polymer to reduce water leakage. Next, we eliminated air using a vacuum pump and a vacuum valve to reduce the air gap between the water and extremities in the vacuum-vinyl box. We performed CT scans to evaluate the density difference of the fabricated water-based bolus device when the device in which the rice-based bolus was placed directly, the rice-based bolus with polymer-vinyl packed rice, and the water were all put in. We analyzed the density change with the air gap volume using a planning system. In addition, we measured the homogeneity and dose in the low-extremities phantom, attached to six TLD, and wrapped film exposed in parallel-opposite fields with the LINAC under the same conditions as the set-up of the CT-simulator. Results: The density value of the rice-based bolus with the rice put in directly was 14% lower than that of the water-based bolus. Moreover, the value of the other experiments in the rice-based bolus with the polymer-vinyl packed rice showed an 18% reduction in density. The analysis of the EDR2 film revealed that the water-based bolus shows a more homogeneous dose plan, which was superior by $4{\sim}4.4%$ to the rice-base bolus. The mean TLD readings of the rice-based bolus, with the rice put directly into the polystyrene box had a 3.4% higher density value. Moreover, the density value in the case of the rice-based bolus with polymer-vinyl packed rice had a 4.3% higher reading compared to the water-based bolus. Conclusion: Our custom-made water-based bolus device increases the accuracy of the set-up by confirming the treatment field. It also improves the accuracy of the therapy owing to the reduction of the air gap using a vacuum pump and a vacuum valve. This set-up represents a promising alternative device for delivering a homogenous dose to the target volume.

Stereotactic Target Point Verification in Actual Treatment Position of Radiosurgery (방사선수술시 두개내 표적의 정위적좌표의 치료위치에서의 확인)

  • Yun, Hyong-Geun;Lee, Hyun-Koo
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.403-409
    • /
    • 1995
  • Purpose : Authors tried to enhance the safety and accuracy of radiosurgery by verifying stereotacitc target point in actual treatment position prior to irradiation. Materials and Methods : Before the actual treatment, several sections of anthropomorphic head phantom were used to create a condition of unknown coordinates of the target point. A film was sandwitched between the phantom sections and punctured by sharp needle tip. The tip of the needle represented the target point. The head phantom was fixed to the stereotactic ring and CT scan was done with CT localizer attached to the ring. After the CT scanning, the stereotactic coordinates of the target point were determined. The head phantom was secured to accelerator's treatment couch and the movement of laser isocenter to the stereotactic coordinates determined by CT scanning was performed using target positioner. Accelerator's anteroposterior and lateral portal films were taken using angiographic localizers. The stereotactic coordinates determined by analysis of portal films were compared with the stereotactic coordinates previously determined by CT scanning. Following the correction of discrepancy the head phantom was irradiated using a stereotactic technique of several arcs. After the irradiation, the film which was sandwitched between the phantom sections was developed and the degree of coincidence between the center of the radiation distribution with the target point represented by the hole in the film was measured. In the treatment of the actual patients, the way of determining the stereotactic coordinates with CT localizers and angiograuhic localizers was the same as the phantom study. After the correction of the discrepancy between two sets of coordinates, we proceeded to the irradiation of the actual patient. Results : In the phantom study, the agreement between the center of the radiation distribution and the localized target point was very good. By measuring optical density profiles of the sandwitched film along axes that intersected the target point, authors could confirm the discrepancy was 0.3 mm. In the treatment of an actual patient, the discrepancy between the stereotactic coordinates with CT localizers and angiographic localizers was 0.6 mm. Conclusion : By verifying stereotactic target point in actual treatment position prior to irradiation, the accuracy and safety of streotactic radiosurgery procedure were established.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

The Analysis of Radiation Exposure of Hospital Radiation Workers (병원 방사선 작업 종사자의 방사선 피폭 분석 현황)

  • Jeong Tae Sik;Shin Byung Chul;Moon Chang Woo;Cho Yeong Duk;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2000
  • Purpose : This investigation was peformed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. Methods and Materials : The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyzed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. Results : The average of yearly radiation exposure of 347 persons was 1.52$\pm$1.35 mSv. Though it was less than 50mSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87$\pm$1.01 mSv/year, mean 1.22$\pm$0.69 mSv between 31 and 40 year old and mean 0.97$\pm$0.43 mSv/year over 41year old (p<0.001). Men received mean 1.67$\pm$1.54 mSv/year were higher than women who received mean 1.13$\pm$0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear modicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.59$\pm$1.81 msv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (p<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74$\pm$1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17$\pm$0.35 mSv/year and upper gastrointestinal room of mean 1.74$\pm$1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75$\pm$1.17 mSv/year and mean 1.50$\pm$1.39 mSv/year than other people who work in radiation area in hospital (p<0.05). Especially young doctors and technologists have the high opportunity to receive higher radiation exposure. Conclusions : The training and education of radiation workers for radiation exposure risks are important and it is necessary to rotate worker in short period in high risk area. The hospital management has to concern health of radiation workers more and to put an effort to reduce radiation exposure as low as possible in radiation areas in hospital.

  • PDF

A Method for Evaluation of Mechanical Accuracy of a Teletherapy Machine Using Beam Directions (방사선 진행방향을 이용한 원격치료장치의 기계적 정확성 평가방법)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • Purpose: The purposes of this paper are to develop a theoretical basis that the beam directions should be considered when the mechanical accuracy of teletherapy machine is evaluated by the star pattern test, to develop methods using asymmetric field in length to simulate beam direction for the case that beam direction does not appear on film. Method: In evaluating mechanical rotational accuracy of the gantry of teletherapy unit by the star pattern test, the direction of radiation beams was considered. A star pattern using some narrow beams was made. Density profiles at 10cm far from estimated gantry axis on the star pattern were measured using an optical densitometer. On each profile, one coordimate of a beam axis was determined. A pair of coordinates on a beam axis form an equation of the axis. Assume that a unit vector equation omitted is with same direction as radiation beam and a vector equation omitted is a vector directing to the beam axis from the estimated gantry axis. Then, a vector product equation omitted ${\times}$ equation omitted is an area vector of which the absolute value is equal to the distance from the estimated gantry axis to the beam axis. The coordinate of gantry axis was obtained by using least-square method for the area vectors relative to the average of whole area vectors. For the axis, the maximum of absolute value of area vectors would be an accuracy of the gantry rotation axis. For the evaluation of mechanical accuracies of collimator and couch axes for which beam direction could not be depicted on a star pattern test film, narrow beams asymmetric in field length was used to simulate beam direction. Result: For a star test pattern to evaluate the mechanical accuracy of rotational axes of a telectherapy machine, the result considering beam direction was different from that ignoring beam direction. For the evaluation of mechanical accuracies of collimator and couch axes by means of a star pattern test, narrow asymmetric beams could simulate beam direction. Conclusion: When a star pattern test is used to evaluate the mechanical accuracy of a teletherapy unit, beam direction must be considered or simulated, and quantitatively evaluated.

  • PDF

Relation Between Degree of Consistency of Elementary Students' Preconceptions on the Brightness of Electric Bulb and Their Cognitive Conflict (전구의 밝기에 대한 초등학생들의 사전개념 일관성 정도와 인지갈등 정도와의 관계)

  • Jung Mee-young;Kim Kung-suk;Kwon Jaesoo
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • This study was to investigate the elementary students' preconception on the brightness of electric bulb and degree of consistency on their preconceptions. Participants were 160 students of fifth graders in Seoul area. They had already teamed about the brightness of series circuit and parallel circuit of batteries. After they solved six problems in the same context, we provided them a pair of circuit which was an anomalous situation. And then they conducted CCLT (Cognitive Conflict Level Test). Elementary school students showed various preconceptions when they explained the light of bulb of two Simple electric Circuits. Many Students Consistently Showed the Scientific misconceptions like 'the light of bulb of two simple electric circuits was that the more batteries and the fewer bulbs were brighter.' The level of consistency that students presented scientific misconceptions was grouped all of four, such as 'high, middle, low, and nothing.' Therefore the higher scientific achievement they have, the higher consistency they have. As the students had high consistency level, they revealed high cognitive conflict level significantly. This high consistency will help them to change their preconception on the brightness of electric bulb and their cognitive conflict.

  • PDF

Usefulness of wearing pocket dosimeter in nuclear medicine (핵의학 영상검사에서 Pocket dosimeter 착용의 유용성 평가)

  • Kim, Young-Bin;Lee, Eun-Ji;Kim, Kun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2011
  • Purpose: The aim of study is to find accuracy of pocket dosimeter in measuring exposed dose in compared with survey meter and to compare exposed dose according as Nuclear medicine exams. Materials and Method: First, radiation dose to point source(185 MBq,370 MBq, ${\ldots}$, 1665 MBq, 1850 MBq) were measured in using a pocket dosimeter and a survey meter. Second, radiation dose to 12 patients injected $^{18}F$-FDG 370 MBq were measured in using a pocket dosimeter and a survey meter. Third, radiation dose to 10 patients injected $^{99m}Tc$-DPD 925 MBq were measured in using a pocket dosimeter and a surveymeter. Result: The average is $70.12{\pm}39.36{\mu}Sv/h$ in measurement of point source with Surveymeter and $5{\pm}3.06{\mu}Sv$ in measurement of point source with Pocket dosimeter. The average is $25.04{\pm}6.16{\mu}Sv/h$ in measurement of PET/CT patients with Surveymeter and $2.41{\pm}0.51{\mu}Sv$ in measurement of PET/CT with Pocket dosimeter. The average is $8.58{\pm}0.96{\mu}Sv/h$ in measurement of Bone Scan patients with Surveymeter and $1{\mu}Sv$ in measurement of Bone Scan patients with Pocket dosimeter. Significant difference found between Survey meter value and Pocket dosimeter value in all experimentation (p<0.001). Conclusion: Accoring to rusult Wearing Pocket dosimeter is usefulnee in manerage of exposed dose in nucler medicine exams.

  • PDF