• Title/Summary/Keyword: 핀틀

Search Result 95, Processing Time 0.034 seconds

Effect of Internal Flow Guide in Pintle Tip on Pintle Injector Thruster Combustion (핀틀 인젝터의 팁 내부 유동 가이드가 연소 성능에 미치는 영향)

  • Lee, Keonwoong;Nam, Jeonsoo;Radhakrishnan, Kanmaniraja;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.703-709
    • /
    • 2020
  • Pintle injector is known to have been adopted as injector of Lunar Module Descent Engine (LMDE) and contributed to success of the Apollo program and recently used in merlin engine. In this study, 500N Lab-Scale pintle injector thruster was manufactured and the combustion experiment with LOx/GCH4 was conducted. However, the proto-type thruster was showed some problems, such as low combustion efficiency and melting of pintle tip. To solve these problems, the flow guide in pintle tip was suggested through the CFD simulation. After addition of flow guide module, the combustion efficiency increased and pintle tip did not melt until the end of combustion.

Experimental Study and Performance Analysis of the Solid Rocket Motor with Pintle Nozzle (핀틀-노즐이 적용된 고체추진기관의 연소 시험 성능 분석)

  • Jin, Jungkun;Ha, Dong Sung;Oh, Seokjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • Firing test of solid rocket motor with pintle-technology carried out and the measured pressure-time curve was compared with the values predicted by the internal ballistic and performance analysis. Without baffle, the measured combustion chamber pressure was similar with the predicted pressure at the beginning of combustion, but gradual increase in pressure, which was unexpected with the end-burning grain of which burning area is constant, was observed. A baffle was inserted to make uniform flow over the pintle. Unlike the thruster without baffle, the measured combustion chamber pressure was 1.4 times higher than the predicted value. Through the CFD simulation, 10% of total pressure loss of the flow was observed from combustion chamber to nozzle throat when the baffle was inserted. The measured pressure with baffle was predicted well by considering the total pressure loss in the internal ballistic modelling and performance analysis.

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

Study on Coupling Drive Mechanism for Multi-Axis Pintle Thrusters (다축 핀틀 추력기에 적용을 위한 구동장치 연동 메커니즘 방안연구)

  • Lee, Jaecheong;Huh, Hwanil;Lee, Hosung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.722-730
    • /
    • 2015
  • Drive mechanism of multi-axis pintle thrusters for DCS(Divert Control System) was designed to meet the needs of minimizing the number of driving motors. In this study, preliminary model was designed in order to implement appropriate pressure control and thrust distribution. Based on the preliminary model study, the drive mechanism for DCS multi-axis pintle thrusters using piston was designed and evaluated by using AMESim software. Results show that three driving motors are enough to actuate four pintle thrusters.

Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles (핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구)

  • Park, Sanghyeon;Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, a numerical study was conducted to characterize the E-D nozzle which changes according to the nozzle pressure ratios. Three different numerical analysis models were designed by changing the pintle inflection angles. When the nozzle pressure ratio is low, the outside air flows into the E-D nozzle to form an open flow field. As the nozzle pressure ratio increases, the flow transition occurs to become the closed flow field where the recirculation region is isolated inside the nozzle. Also, the highest thrust coefficient was obtained in the analytical model with high pintle inflection angle at all nozzle pressure ratios.

Dynamic Modeling and Characteristics Analysis of Solid Rocket Motor with Multi Axis Pintle Nozzles (다축 핀틀 노즐을 장착한 고체 추진기관의 동적 모델링 및 특성 분석)

  • Ki, Taeseok;Hong, Seokhyun;Park, Ik-soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.20-28
    • /
    • 2015
  • Performance parameters of solid rocket motor with multi axis pintle nozzles were analyzed theoretically and modeled. For figuring out the governed variable of dynamic characteristics of system, dynamic analysis was done by using established model. To present characteristics of this system, the model should include not only internal ballistics of propulsion unit but also actuating system to move pintle. For solid rocket motor with multi axis pintle nozzles, not only performance of steady state but also dynamic characteristic of transient state is important design parameter to precise thrust control. Therefore, response time of open-loop system was analyzed by using established model and requirement about response time was satisfied by controlling pressure.

Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition (연소실 경계조건 변화에 따른 핀틀 노즐의 동특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Choi, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.22-31
    • /
    • 2018
  • In this study, numerical simulations were performed to determine the dynamic characteristics of a pintle nozzle, with changes to the chamber boundary conditions. To apply movement, to the pintle, the nozzle and pintle were created separately by an auto-grid generation program using an overset grid method. The chamber boundary conditions were selected between a constant mass-flow rate condition and a propellant burn-back condition. The pressure and thrust characteristics of the constant mass-flow rate condition were determined by changing the ratio of the mass-flow rate in the inlet. The propellant burn-back condition was considered by formulation of the combustion rate. The burn-back conditions represented nonlinear phenomena, unlike the constant mass flow rate, and a small flow rate resulted in a large change in the chamber pressure.

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part II. Thruster Performance Characteristics (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part II 추력기 성능 특성)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The performance of pintle thruster is analyzed by using the pintle thruster performance analysis model which integrating the element models introduced in Part I. To verify the performance analysis, the results of the developed program are compared with the experimental data of kerosene/hydrogen peroxide liquid pintle thrusters. Based on the results, the characteristics of the pintle thruster are analyzed. The sensitivity analysis is performed to investigate the effect of thruster shape and operation parameters on performance characteristics using both OAT and scatter plot methods. The four performance parameters such as droplet diameter, film flow rate, O/F ratio, and nozzle throat diameter are evaluated to investigate their effects on characteristic speed, combustor pressure, and specific thrust.

Study on the Spray Characteristics of Liquid/Liquid Pintle Injector by Opening Distance (액체/액체 핀틀 분사기의 개도에 따른 분무특성 연구)

  • Yoon, Wonjae;Ahn, Jonghyeon;Ahn, Kyubok;Yoon, Hosung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.14-25
    • /
    • 2021
  • An experimental study was conducted on the spray characteristics of the pintle injector by opening distance. The discharge coefficient of the pintle injector was investigated and the spray angle was measured by taking the spray image by test conditions. As a result of the measurement of the discharge coefficient, it was confirmed that the change in the discharge coefficient of the outer injector was not significant over the experimental conditions, but the change in the discharge coefficient of the inner injector was decreased as the flow rate increased. Measurement of the spray angle showed that the change in the spray angle was not significant in the conditions under which the spray was fully developed, but the spray was not fully developed at low flow rates. This confirmed the possibility of thrust control using the pintle injector.