• Title/Summary/Keyword: 핀틀추력기

Search Result 36, Processing Time 0.023 seconds

Effects of Pintle Shape on Nozzle Flow Characteristics of Variable Nozzle Throat Area Pintle Thrusters (핀틀 형상이 가변 노즐목 핀틀 추력기의 노즐 유동에 미치는 영향)

  • Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.275-278
    • /
    • 2010
  • By changing the nozzle throat area during the operation, thrust of a pintle thruster can be adjusted easily such as a liquid propulsion. In this paper, numerical analysis was carried out for SNECMA's pintle thruster with different pintle shapes. Flow field and aerodynamic load changed drastically with pintle shapes. Bore in the pintle decreased aerodynamic load significantly.

  • PDF

Preliminary Experimental Results of Pressure Control for Modulatable Thruster Applications (노즐목 가변 추력기의 압력제어 기법에 관한 예비실험 결과)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.18-21
    • /
    • 2011
  • In this study, basic research on the pressure control using driven pintle of modulatable thruster is presented. For this purpose, pintle thruster and pintle shape was developed. The actuator model was selected by calculating pintle load using Fluent software. Preliminary unsteady experimental results show that huge pressure oscillation is occurred as the pintle approach toward nozzle wall. From the preliminary experimental results, we could see possibility of pressure control of the modulatable thruster.

  • PDF

Numerical Study on Thrust Characteristics of an External Pintle Thruster (노즐 목 외부형 핀틀추력기의 추력특성에 대한 수치해석 연구)

  • Choi, Junsub;Kim, Dongyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1071-1078
    • /
    • 2015
  • Numerical computations were performed to investigate the effects of pintle stroke, altitude, and bore on the performance of an external pintle thruster. Results show that under-expansion flow occurs always, independent of pintle stroke. An external pintle thruster shows good performance in that it is capable of good amount of thrust control, while aerodynamic loads are increased due to shock waves on the pintle support. When altitude is increased to 20 km, the nozzle exit velocity, Mach number, thrust as well as aerodynamic loads are increased. Bore increases aerodynamic load 5.9%, and therefore pintle shape without bore is preferred for lower aerodynamic load of a pintle in order to actuate the pintle.

Effect of Bore an Aerodynamic Loads in Modulatable Thrust Devices (노즐목 가변 추력기에서 Bore가 구동기의 공력하중에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.189-192
    • /
    • 2011
  • In solid rockets, a pintle thruster is a modulatable thrust device which controlls nozzle throat area. In this study, effect of bore on aerodynamic loads in a SNECMA modulatable thruster was carried out. Existence of bore resulted in reduced aerodynamic load.

  • PDF

Patent Review on Drive Mechanism of Multi-Axis Pintle Thrusters (다축 핀틀 추력기 구동 메카니즘의 특허 분석)

  • Kim, Seong-Su;Huh, Hwan-Il;Lee, Ho-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.262-267
    • /
    • 2012
  • For DACS system which controls pintle position to change nozzle throat area, one actuator has been used for each modulatable pintle thruster. This ten actuator system drove to complex system structure and complicated control mechanism. In order to overcome this shortcomings, international patents were reviewed, analysed and presented.

  • PDF

Thrust and Aerodynamic Load Characteristics of an Internal Pintle Thruster (노즐 목 내부형 핀틀추력기의 추력 및 공력하중 특성)

  • Choi, Junsub;Kim, Dongyeon;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Numerical computations are performed to investigate the effect of pintle stroke on the performance of an internal pintle thruster. Results show that the thrust control ratio was less than 2% and the aerodynamic load ratio was 22% as the pintle stroke increased. The flow past the nozzle throat rapidly expanding because of the shape of the pintle, and a shock wave was generated. Particularly, at the pintle stroke distance of 4 and 5 mm, the shock wave hit the wall of the nozzle, results in peeling bubbles. Depending on the altitude, the thrust increased and the aerodynamic load decreased, but the difference was as small as 1.5%. In the presence of the bore, the reduction of the pintle tip area resulted in a decrease in aerodynamic load.

Steady State Experimental Study of Pintle Shape for Modulatable Thruster Applications (노즐목 가변 추력기 적용 목적의 핀틀 형상에 대한 정상상태 실험 연구)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.153-156
    • /
    • 2011
  • Steady state experiment was carried out for modulatable thruster applications, with four different pintles. Results show that thrust can be modulated by changing nozzle throat area with pintle penetration. However, effect of pintle shape on the thruster performance is yet to be concluded.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성)

  • Noh, Seonghyeon;Kim, Jihong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper describes how to apply one-dimensional simulation to predict unsteady state characteristics of the cold-gas pintle thruster. Mass flow rate, chamber pressure, and nozzle exit pressure are key parameters for thrust control. Chamber pressure rose and fell monotonously with the pintle stroke variation, while thrust variation was different from chamber pressure variation. During the forward pintle stroke operation, the thrust value tended to decrease initially and returned to increase when pintle speed and chamber free volume exceed some specified value. Even though one-dimensional simulation has the limitations to predict unsteady state characteristics, it is still useful for initial performance assessment of various thrusters which adopt an altitude compensation nozzle such as a dual-bell nozzle, prior to experiment or numerical analysis.

Technology and Developing Trends of Pintle Injector for Throttleable Engine (가변추력 엔진용 핀틀 분사기 분석 및 개발동향)

  • Lee, Suji;Koo, Jaye;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.107-118
    • /
    • 2017
  • As the interest in lunar exploration increases, a throttleable engine is regarded as a important technology. Variable area injectors have been identified to be the most reliable throttling method. Pintle injector is a representative injector of the variable method. It has a simple design and inherent combustion stability. Therefore, it is necessary to research the pintle injector. The present study investigates the concept of the injector, the design factors, and the latest development trends for pintle injector design.

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성)

  • Kim, Jihong;Noh, Seonghyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.