• Title/Summary/Keyword: 핀칭효과

Search Result 5, Processing Time 0.02 seconds

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근 위치가 다른 철근콘크리트 부재의 거동 분석)

  • Lee, Jung-Yoon;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.685-692
    • /
    • 2007
  • When the shear force governs the response of an RC element, as in the case of a low-rise shear wall, the effect of shear on the element's response is thought to be responsible for the 'pinching effect' in the hysteretic loops. However, it was recently shown that this undesirable pinching effect can be eliminated in the hysteretic load-deformation curves of a shear-dominant element if the steel grid orientation is properly aligned in the direction of the applied principal stresses. In this paper, the presence and absence of the pinching mechanism in the hysteretic loops of the shear stress-strain curves of RC elements was explained rationally using a compatibility aided truss model. The analytical results indicate that the pinching effect of the RC elements is strongly related to the direction of the steel arrangement. The area of the energy dissertation does not increase proportionally to the difference between the direction of the principal compressive stress and the direction of the steel arrangement.

Nonlinear Finite Element Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.353-367
    • /
    • 2003
  • This paper describes the extension of the numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subjected to monotonic in plane shear and introduced in the companion paper, to simulate effectively the behavior of RE structures under cyclic loadings. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress strain relation of concrete, which across the tension compression region, is defined. In addition, unlike previous simplified stress strain relations, curved unloading and reloading branches inferred from the stress strain relation of steel considering the Bauschinger effect we used. The modifications of the stress strain relation of steel are also introduced to reflect pinching effect depending on the shear span ratio and an average stress distribution in a cracked RC element. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.