Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.771-774
/
2002
에러 발생율이 높은 이동 통신 채널 환경에서는 부호화된 비디오 스트림 전송시 발생된 채널 에러는 비디오 화질에 큰 영향을 줄 수 있다. 본 논문에서 현재 널리 사용되고 있는 H.263 부/복호화기에서 전송도중 에러가 발생했을 경우 추가적인 데이터 삽입 없이 효율적으로 에러를 은닉할 수 있는 기법에 관하여 제안하였다. 특히, 영상신호는 대개 인트라 픽쳐와 인터 픽쳐로 크게 구분되는데, 이들 중 부호화된 스트림에서 발생빈도가 놀은 인터 픽쳐에 대한 오류은닉을 우선적으로 목표로 하였다. 인터 프레임 픽쳐에서 DFD나 움직임벡터 손실시, 정확히 복원된 손실된 매크로블럭에 인접한 주변 픽셀 4*4을 이용해서 이전픽쳐에서 움직임벡터을 추정하고, 추정된 움직임 벡터을 가지고 손실된 매크로블록을 복원한다. 이때 주변블럭의 움직임벡터 추정시 소요되는 계산량은 충분히 디코더측에서 수용한다는 전제하에서 실험하였다.
The Journal of the Convergence on Culture Technology
/
v.4
no.3
/
pp.241-246
/
2018
Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise problem generated in test data image. The image restoration method resolves the noise problem by examining the numbers and positions of the Direct neighbors and the Indirect neighbors for each pixel constituting the test data. As a result, satisfactory recognition result can be obtained by eliminating the noise problem generated in the test data through the image restoration process as much as possible and also by calculating the differences between the learning data and the test data in the area unit, thereby reducing the possibility of recognition error by the noise problem.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.377-379
/
2020
The hologram data is having a dependence on the pixel pitch of the SLM (spatial light modulator) and the wavelength of light, and the quality of the digital hologram is proportional to the unit pixel pitch and the total resolution. In addition, since each pixel has a complex value, the amount of data in the digital hologram also increases exponentially, and the size is bound to be very large. Therefore, in order to efficiently handle digital hologram files, it is essential to reduce the file size through a codec and store it. Recently, research on enhancing image quality damaged by the codec is actively underway. In this paper, the hologram image of JPEG Pleno, which is the standard hologram data, was used, and the image quality damage that occurs whenthe holographic image is encoded and decoded through the JPEG2000, AVC, and HEVC codec is enhanced with a deep learning network to find out whether the image quality can be improved. we also compare and quantitatively find out the degree of improvement in image quality.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.1
/
pp.63-74
/
2023
In order to ensure safety to invasion of privacy, Federated Learning(FL) that learns using parameters is emerging. However a paper that leaks training data using gradients was recently published. Our paper implements an experiment to leak training data using gradients in a federated learning environment, and proposes a method to improve reconstruction performance by improving existing attacks that leak training data. Experiments using Yale face database B, MNIST dataset on the proposed method show that federated learning is not safe from invasion of privacy by reconstructing up to 100 data out of 100 training data when performance of federated learning is high at accuracy=99~100%. In addition, by comparing the performance (MSE, PSNR, SSIM) of pixels and the performance of identification by Human Test, we want to emphasize the importance of the performance of identification rather than the performance of pixels.
색상 전이는 스타일 전이, 색이 바랜 사진의 복원, 색상화, 색상의 보정에 사용될 수 있는 기법이다. 본 연구에서는 기존 색상 전이의 문제점을 해결하기 위해서 영상 분할 기반의 색상전이 기법을 제시한다. 영상에서 색상의 가장 의미있는 최소 단위를 픽셀로 보고 있는 기존 연구에 반해서, 본 연구에서는 영상 조각을 영상에서 가장 의미 있는 최소 단위로 보고 색상 전이를 수행한다. 영상 분할 기반의 색상 전이를 통해서 기존 연구에서 발생할 수 있었던 픽셀간의 코헤런스 문제를 해결한다. 또한 영상 분할 기반으로 했을 때에 생길 수 있는 경계 문제를 해결하기 위한 새로운 방법을 제시한다. 제시된 기법을 이용해서 색상 전이의 응용인 스타일 전이에 적용한다.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.55-58
/
2016
본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.
Proceedings of the Korean Information Science Society Conference
/
2007.10d
/
pp.580-584
/
2007
H.264/AVC SVC에서는 공간적 확장성을 지원하기 위하여 계층 간 예측 방법을 새롭게 도입하였다. 계층 간 예측은 하위 계층의 움직임 정보, 텍스처 정보, 잔여 신호 정보를 이용하여 계층 간 중복성을 제거하는 방법이다. 따라서 상위 계층의 부호화 효율을 높이는 반면, 복호화 과정에서는 하위 계승의 잔여 신호 정보를 픽셀 단위까지 복원하여 계산 복잡도가 높아지는 문제점이 있다. 본 논문에서는 이러한 H.264/AVC SVC에서 복호화 과정의 계산 복잡도를 줄이기 위하여 DCT 기반의 잔여 신호 예측 구조를 제안하였다. H.264/AVC SVC에서 픽셀 기반의 잔여 신호 예측 구조와 제안하는 구조의 연산 수를 계산하여 계산 복잡도를 비교한 결과 약 33%의 개선이 이루어졌다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.656-659
/
2020
초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.626-628
/
2016
본 논문에서는 이진 영상에서 일부 정보가 손실된 경우에 히스토그램을 분석하여 구간을 분할한 후, 오츠 이진화와 퍼지 이진화 기법을 적용하여 원 영상을 이진화 한 후에 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 그레이 영상에서 히스토그램을 분석하여 픽셀 값의 변화의 폭이 큰 부분들을 분석하여 구간들을 분할하고 변화의 폭이 큰 부분의 지점에 속하는 영역은 오츠 이진화 기법을 적용하여 이진화하고 그 외의 구간들은 퍼지 이진화 기법을 적용하여 영상을 이진화 한다. 그리고 이진화 된 영상을 홉필드 네트워크를 적용하여 학습한다. 실험 영상에 정보 손실이 발생한 영상을 대상으로 제안된 방법을 적용한 결과, 대부분의 정보 손실이 있는 영상에서 모두 복원되는 것을 확인하였다.
Video Completion refers to a computer vision technique which restores damaged images by filling missing pixels with suitable color in a video sequence. We propose a new video completion technique to fill in image holes which are caused by removing an unnecessary object in a video sequence, where two objects cross each other in the presence of camera motion. We remove the closer object from a camera which results in image holes. Then these holes are filled by color information of some others frames. First of all, spatio-temporal volumes of occluding and occluded objects are created according to the centroid of the objects. Secondly, a temporal search technique by voxel matching separates and removes the occluding object. Finally. these holes are filled by using spatial search technique. Seams on the boundary of completed pixels we removed by a simple blending technique. Experimental results using real video sequences show that the proposed technique produces new completed videos.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.