• Title/Summary/Keyword: 피해 탐지

Search Result 618, Processing Time 0.031 seconds

A Study on the Detection Model of Illegal Access to Large-scale Service Networks using Netflow (Netflow를 활용한 대규모 서비스망 불법 접속 추적 모델 연구)

  • Lee, Taek-Hyun;Park, WonHyung;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • To protect tangible and intangible assets, most of the companies are conducting information protection monitoring by using various security equipment in the IT service network. As the security equipment that needs to be protected increases in the process of upgrading and expanding the service network, it is difficult to monitor the possible exposure to the attack for the entire service network. As a countermeasure to this, various studies have been conducted to detect external attacks and illegal communication of equipment, but studies on effective monitoring of the open service ports and construction of illegal communication monitoring system for large-scale service networks are insufficient. In this study, we propose a framework that can monitor information leakage and illegal communication attempts in a wide range of service networks without large-scale investment by analyzing 'Netflow statistical information' of backbone network equipment, which is the gateway to the entire data flow of the IT service network. By using machine learning algorithms to the Netfllow data, we could obtain the high classification accuracy of 94% in identifying whether the Telnet service port of operating equipment is open or not, and we could track the illegal communication of the damaged equipment by using the illegal communication history of the damaged equipment.

Development of a method for urban flooding detection using unstructured data and deep learing (비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발)

  • Lee, Haneul;Kim, Hung Soo;Kim, Soojun;Kim, Donghyun;Kim, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1233-1242
    • /
    • 2021
  • In this study, a model was developed to determine whether flooding occurred using image data, which is unstructured data. CNN-based VGG16 and VGG19 were used to develop the flood classification model. In order to develop a model, images of flooded and non-flooded images were collected using web crawling method. Since the data collected using the web crawling method contains noise data, data irrelevant to this study was primarily deleted, and secondly, the image size was changed to 224×224 for model application. In addition, image augmentation was performed by changing the angle of the image for diversity of image. Finally, learning was performed using 2,500 images of flooding and 2,500 images of non-flooding. As a result of model evaluation, the average classification performance of the model was found to be 97%. In the future, if the model developed through the results of this study is mounted on the CCTV control center system, it is judged that the respons against flood damage can be done quickly.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

A Study on National Response Strategies of Large-scale Marine Disaster (대규모 해양재난의 국가적 대응전략에 관한 연구)

  • Lee, Choonjae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2019
  • The sinking of the M/V SEWOL in April 2014 was not a mere marine accident, but a marine catastrophe. This grim case developed into a social tragedy that impinged the national sentiment and communal integrity. It is imperative that thorough provisions and measures be outlined at the national level with regard to massive marine accidents, oil pollution, and natural disasters that might critically affect government affairs. Pivoting on "The Black Swan Theory," a concept of improperly rationalizing a national crisis based on uncertainties, this research assesses a variety of response strategies that minimize the national economic and social damage caused by a large-scale marine disaster. Along with the effort of minimizing any potential defects in each protective barrier, the "Black Swan Detection System of the Marine Disaster" needs to be incorporated to prevent cases wherein such defects lead to an actual crisis. Maritime safety must be systematically unified under a supervisory organization, and a structure for maritime crisis on-scene command and cooperation must likewise be established in order that every force on the scene of a marine disaster may act effectively and consistently under the direction of an on-scene commander.

Enhanced Sound Signal Based Sound-Event Classification (향상된 음향 신호 기반의 음향 이벤트 분류)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.193-204
    • /
    • 2019
  • The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.

Effective Defense Mechanism Against New Vulnerability Attacks (신규 취약점 공격에 대한 효율적인 방어 메커니즘)

  • Kwak, Young-Ok;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.499-506
    • /
    • 2021
  • Hackers' cyber attack techniques are becoming more sophisticated and diversified, with a form of attack that has never been seen before. In terms of information security vulnerability standard code (CVE), about 90,000 new codes were registered from 2015 to 2020. This indicates that security threats are increasing rapidly. When new security vulnerabilities occur, damage should be minimized by preparing countermeasures for them, but in many cases, companies are insufficient to cover the security management level and response system with a limited security IT budget. The reason is that it takes about a month for analysts to discover vulnerabilities through manual analysis, prepare countermeasures through security equipment, and patch security vulnerabilities. In the case of the public sector, the National Cyber Safety Center distributes and manages security operation policies in a batch. However, it is not easy to accept the security policy according to the characteristics of the manufacturer, and it takes about 3 weeks or more to verify the traffic for each section. In addition, when abnormal traffic inflow occurs, countermeasures such as detection and detection of infringement attacks through vulnerability analysis must be prepared, but there are limitations in response due to the absence of specialized security experts. In this paper, we proposed a method of using the security policy information sharing site "snort.org" to prepare effective countermeasures against new security vulnerability attacks.

Analysis of Coastline Changes in Yeongdong Region Using Aerial Photos and CORONA Satellite Images (항공사진과 CORONA 위성영상을 이용한 영동지역 해안선 변화 분석)

  • Ahn, Seunghyo;Kim, Gihong;Lee, Hanna
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2022
  • In the Yeongdong region of Gangwon-do, coastal areas are important resources in terms of cultural, social and economic aspects. However, the coast of Gangwon-do is experiencing severe erosion, and it is concerned that its adverse effects will gradually increase. In this study, coastline changes of Yangyang and Gangneung in Gangwon-do were tracked and analyzed over a long period of time. In order to build time series image data, aerial photos from the 1940s to the present were mainly used, and data from CORONA satellite, which operated from the 1960s to the early 1970s, were collected and used together. Using 51cm resolution ortho image and 2m resolution Digital Elevation Model(DEM) as reference, ground control points were selected to perform geometric correction on the aerial photos and CORONA images. Subsequently, Canny edge detector applied to these images to extract the coastlines. As a result of analyzing the extracted and vectorized coastlines by overlaying them in chronological order, erosion and deposition occurring around the artificial structures and on the nearby beaches were observed. In this study, the effect of seasonal variation, tide, and various coastal management including the beach filling were not considered. Because coastal erosion is greatly affected by geographic factors, each local government must find its own solution. Continuous research and local data accumulation are required.

Qualitative Verification of the LAMP Hail Prediction Using Surface and Radar Data (지상과 레이더 자료를 이용한 LAMP 우박 예측 성능의 정성적 검증)

  • Lee, Jae-yong;Lee, Seung-Jae;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.

Assessment of physical condition of old large Chionanthus retusus(Chinese Fringe Tree) using structural stability analysis (천연기념물 이팝나무 노거수 구조안정성 진단을 통한 물리적 생육상태 평가)

  • SON Jiwon;SHIN Jinho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.118-130
    • /
    • 2023
  • Decay or large cavities inside trees are the main causes of trees overturning and broken branches, and structurally weakened trees are more vulnerable to strong winds and heavy snowfall. Recently, as strong winds and typhoons increase due to climate change, the damage to human life and property due to trees overturning continues to increase, and cultural assets are in a similar situation. In particular, old big trees are structurally vulnerable to external shocks such as strong winds and heavy snowfall. This study was aimed at providing a scientific basis for preventive protection measures by conducting a structural stability diagnosis of seven retusa fringe trees designated as natural monuments. For the structural stability diagnosis, tree risk assessment and internal tree defect measurements were performed. As a result of the tree risk assessment, the Retusa Fringe Trees in Sinjeon-ri, Yangsan and Gwangyangeupsu had the highest risk of broken branches due to weak branch attachment strength. As a result of the diagnosis of internal defects of cross sections of measured trees, there were suspected cavities or severe decay in all except two trees of the population of Retusa Fringe Trees in Pyeongji-ri. Natural disasters due to climate change are increasing, and the scale is getting larger, so it is very important to preemptively manage large old trees through scientific structural safety diagnosis to manage trees that are vulnerable to environmental changes.

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.