• Title/Summary/Keyword: 피해분석

Search Result 5,958, Processing Time 0.042 seconds

Pepper Blight Disease Inhibition Metagenome Clone Screening Using Soil Metagenome Library (토양 Metagenome Library로부터 고추역병 저해 클론 탐색)

  • Park, Hae-Chul;Sung, So-Ra;Kim, Dong-Gwan;Koo, Bon-Sung;Jeong, Byeong-Moon;Kim, Jin-Heung;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.228-231
    • /
    • 2009
  • We have purified Phytophthora capsici alpha and beta tubulin from Escherchia coli BL21(DE3). The recombinant alpha and beta tubulins were assembled into microtubule in vitro with specific conditions. The metagenome library was isolated from soil in the Mt. Yeo-Ki, Suwon, Korea and manufactured with the method mentioned in experiment contents for in vitro screening of microtubule assembly screening. FRET effect was used for microtubule assembly inhibitor screening with metagenome library. We got 2 metagenome clones from in vitro screening, and these 2 hit clones showed P. capsici growth inhibition activity on the growing pepper plants. These results suggest that new development of potent inhibitor for pepper blight disease and new approach to prevention of pepper blight disease.

Optimum Delivery Frequency for Reducing Construction Logistics Cost under a Carbon Taxation (탄소세 부과시 건설 물류비용 최소화를 위한 운송빈도 최적화)

  • Park, Moon-Seo;Chun, Myung-Hee;Lee, Hyun-Soo;Hwang, Sung-Joo;Jang, Myung-Houn
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.73-82
    • /
    • 2011
  • The term 'green' has become an important way of survival for the construction industry in 21th century in accordance with the emergence of the environmental crisis due to the climatic change. Especially the policy of carbon taxation, planed to be introduced from 2012, is expected to be a considerable burden to the construction industry which has abundant carbon emission during the resource transportation due to the complexity of resources and local distribution of the construction sites. In this regard, this study shows an optimizing strategy for delivery frequency, which downsizes the net distribution costs based on the assumption that, despite of its other advantagements, the frequent small lot mode of JIT delivery would take negative effects due to the increase of costs of transportation and carbon emission once the carbon taxation policy carried out. To simulate the efficiency of the management strategies, the System Dynamics modeling has been used. The results show that the frequent small lot transportation strategy is now always efficient method to these changes, and that the frequency of transportation should be re-determinated according to the extent of the imposition of carbon tax. This study provides the conceptual frame for an efficient management of transportation system of the construction industry, showing necessity of change of the resource transportation systems through analysing JIT deliver system in accordance with the global changes in environmental economy.

On Ensuring the Safety Integrity of the BCT System through Linkage Safety Analysis Techniques and SysML-based Architecture Artifact (안전분석 기법과 SysML 기반의 아키텍처 산출물의 연계성 확보를 통한 BCT 시스템의 안전 무결성 확보에 관한 연구)

  • Kim, Joo-Uk;Oh, Se-Chan;Sim, Sang-Hyun;Kim, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.352-362
    • /
    • 2016
  • Today, it appears that the rapid advances in technology have allowed broadening both the system technology and the business opportunities in the rail industry. Owing to the developments in technology and the industry, and also due to the hearth, the latest high-speed trains and a variety of unattended operations in rail systems are being developed and are operational. In particular, this study covers the existing railway rolling stock and signaling systems that operate in an environment more complex than the concept of localized management, so the introduction of a new signaling system is needed. In addition, developments based on the existing signal system concepts for passenger railways need to minimize human injury. In this study, to participate in the development of new systems in a variety of domains and to provide an integrated common vision methodology as an engineer on the basis of efficient signal system design and safety would like to present the methodology for action. Therefore, each different linkage through the next new domain zone system design: design through to secure the integrity of safety than can secure methodology.

Use of Sprinkler System for Production Forest Management of Pine Mushroom (Tricholoma matsutake) (살수장치(撒水裝置)를 이용(利用)한 송이산 관리(管理)에 관(關)한 연구(硏究))

  • Chung, Sang Bae;Kim, Chul Su
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.21-25
    • /
    • 2005
  • In order to prevent the pine mushrooms, Tricholoma matsutake, from being damaged by the pine needle gall midges, Thecodiplosis japonensis, and thereby, to increase their production and improve their quality, a sprinkler system was installed on the mushroom field. A low-concentration insecticide (deltamethrin 1% EC, x2,000) was sprayed once at insects' most active time every day during the period of insects' adult occurrence and thereafter, the irrigation by ground water spraying was periodically enforced. Such a test was conducted at Yangyang-Gun, Kwangwon-do, Korea for 2 years from 2000 through 2001. The pine needle gall midges generally emerged for about 40 days from late May to early July. 50% emergence of them was about June 6, and peak emergence (more than 80%) was early or mid-June. Gall formation rate was 3.5% on average with this ground insecticide spraying, while 51.3% when not treated. Control effectiveness of this insecticide spraying was 92.3%, which was higher than 82.5% by the conventional injection of insecticide into tree stems. Pine mushrooms emerged for about 35 days from mid-September through earlier October, and around 80% of them did for about 15 days from late September through early October. As a result of the periodic ground water-spraying (30 mm per week) for 2 months (from August to October), the production of mushrooms increased by 74.3% (110% in terms of weight), with their quality improvement. The mushrooms produced from the treated stand by the spraying system were priced 8,670,000 wons per hectare, and thus, the net income deducting the facility and management cost was 4,310,000 wons, about 5% higher than value from the control stand. It was analyzed that this treatment was significantly cost effective when the facilities are used more than 5 years.

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.

Dispersion Characteristics of Wave Forces on Interlocking Caisson Breakwaters by Cross Cables (크로스 케이블로 결속된 인터로킹 케이슨 방파제의 파력분산특성)

  • Seo, Ji Hye;Yi, Jin Hak;Park, Woo Sun;Won, Deck Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.315-323
    • /
    • 2015
  • Damage level of coastal structures has been scaled up according to increase of wave height and duration of the storm due to the abnormal global climate change. So, the design criteria for new breakwaters is being intensified and structural strengthening is also conducted for the existing breakwaters. Recently, interlocking concept has been much attention to enhance the structural stability of the conventional caisson structure designed individually to resist waves. The interlocking caisson breakwater may be survival even if unusual high wave occurs because the maximum wave force may be reduced by phase lags among the wave forces acting on each caisson. In this study, the dispersion characteristics of wave forces using interlocking system that connect the upper part of caisson with cable in the normal direction of breakwater was investigated. A simplified linear model was developed for computational efficiency, in which the foundation and connection cables were modelled as linear springs, and caisson structures were assumed to be rigid. From numerical experiments, it can be found that the higher wave forces are transmitted through the cable as the angle of incident wave is larger, and the larger the stiffness of the interlocking cable makes larger wave dispersion effect.

Characteristics of Cyanobacterial Occurrence and Concentration Distribution of Cyanotoxins in Hoeya Reservoir (회야호의 남조류 발생 특성과 남조류 독소의 농도분포특성)

  • Choi, Young Ah;Han, Nan Sook;Lim, Eun Gyoung;Kim, Young Min;Choun, Chang Jae;Lee, Byoung Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.943-952
    • /
    • 2013
  • Algae blooms have soared recently in the lakes across the nation due to eutrophication. Blue-green algae cause unpleasant scene, produce taste and odor problem, and hinder processes in drinking water treatment. Algae toxicity monitoring has been strengthened, because the damages of wild lives and livestocks by algal toxins have been reported. Investigation on the characteristics of cyanobacterial occurrence and concentration distribution of Cyanotoxins in Hoeya reservoir have been conducted. Physical and chemical influences of water environment on cyanobacterial occurrences have also been studied. Movements of four species of Microcystin and five species of Anatoxin-a among Cyanotoxins were observed by LC-MS/MS analysis. Microcystis spp. among the cyanobacteria have mainly dominated in the Hoeya reservoir during the investigating period. The density of cyanobacteria were positively correlated with temperature and pH of water. Highest concentrations of Microcystin-LR and Microcystin-RR were $0.424{\mu}g/L$ and $0.117{\mu}g/L$ at the sampling points. Total concentration of Cyanotoxins in water coming into the water treatment plant was $0.182{\mu}g/L$, and they were not detected in treated water.

A Study on Role Assignment between the Ministries of Government for the Research and Development on Disaster Prevention (방재 연구개발 분야의 정부 부처간 역할 조정에 관한 연구)

  • Park, Jung-Han;Choi, Gyu-Hyun;Kim, Young-Soo;Jung, Seong-Hoon;Lee, Sang-Houck;Lee, Pyeong-Koo;Lee, Woan-Kyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.359-372
    • /
    • 2008
  • A number of researches on disaster risk reduction using the most advanced equipments and scientific technologies have been performed to minimize the damage of property and to protect human life. Although the Korean government is trying to enlarge the research area for disaster risk reduction, the investment size and the applicable results in this area have stayed in the lower level comparing to other scientific fields in Korea and the same field in advanced countries. However, the National Emergency Management Agency (NEMA), a government Agency which is responsible for disaster management coordination, was established in June 2004 establishing an efficient and well-organized system to cope with various disasters. In this study, investment size by the government was evaluated and associated areas were also identified. We also analyzed the roles on research and development for disaster risk reduction among different government Ministries were analyzed and role assignment to each Ministry was proposed. The role assignment has been concreted by conducting the process of approval in the government.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4 (Burkholderia pyrrocinia CAB08106-4 균주를 이용한 마늘 흑색썩음균핵병의 생물학적 방제)

  • Han, Kwang Seop;Kim, Buyng Ryun;Kim, Jong Tae;Hahm, Soo Sang;Hong, Ki Heung;Chung, Chang Kook;Nam, Yun Gyu;Yu, Seung Hun;Choi, Jae Eul
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • White rot caused by Sclerotium cepivorum was reported to be severe soil-born disease on garlic. Disease progress of white rot of garlic (Allium sativum L.) was investigated during the growing season of 2009 to 2011 at Taean and Seosan areas. The white rot disease on bulb began to occur from late April and peaked in late May. The antifungal bacteria, Burkholderia pyrrocinia CAB08106-4 was tested in field bioassay for suppression of white rot disease. As a result of the nucleotide sequence of the gene 16S rRNA, CAB008106-4 strain used in this study has been identified as B. pyrrocinia. B. pyrrocinia CAB080106-4 isolate suppressed the white rot with 69.6% control efficacy in field test. These results suggested that B. pyrrocinia CAB08106-4 isolate could be an effective biological control agent against white rot of garlic.