• Title/Summary/Keyword: 피크의 정리

Search Result 12, Processing Time 0.015 seconds

Optimal Circuit Design through Snubber Circuit Analysis (스너버(Snubber) 회로 분석을 통한 회로의 최적설계)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.137-142
    • /
    • 2023
  • When designing a SMPS(Switched Mode Power Supply) circuit, a part that is easily overlooked without special consideration is a snubber circuit. However, the performance degradation of the SMPS due to the snubber circuit and the effect on the entire SET cannot be ignored. In addition, a snubber circuit is added to both ends of the switch to protect the device from peak voltage and current during switching and to reduce loss during on/off switching. Therefore, in this paper, for a sufficient understanding of snubber circuits, theoretical analysis and experimental formulas that can be applied by designers during actual circuit design are arranged to promote optimization of snubber circuits.

Evaluation of Smoke Risk and Smoke Risk Rating for Combustible Substances from Fire (화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui;You, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.