• Title/Summary/Keyword: 피치

Search Result 1,321, Processing Time 0.022 seconds

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines (풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석)

  • Kim, KwangMin;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.

Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent (용매 처리 석유계 피치로 코팅된 인조 흑연 음극소재의 전기화학적 특성)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.5-10
    • /
    • 2019
  • In this study, electrochemical characteristics of artificial graphite coated with petroleum pitch using solvent method as anode material of lithium ion battery were investigated. As the solvent, n-hexane, toluene, tetrahydrofuran and quinoline were used. The surface of the prepared anode material was analyzed by SEM and TEM. Also the electrochemical performances of the prepared anode materials were performed by constant current first charge/discharge, cycle, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DEC=1:1 vol%). The coating thickness of the prepared graphite was about 100-500 nm and the graphite coated with THF solvent had a smoother surface than that using other solvents. It was found that pitch-coated graphite (THF) show the low initial irreversible capacity (51 mAh/g), the high discharge capacity (360 mAh/g) and coulombic efficiency (99%).

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.

Sub-modality of Mental Images to Make lines Alive (대사를 생명력 있게 만드는 멘탈 이미지의 하위양식)

  • Choi, Jung-Sun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.119-129
    • /
    • 2019
  • Traditional speech training in acting education focused on the technical aspects of expressing the lines such as finding long/short syllables in the word, exercising articulation of consonants and vowels, and practicing diction etc. There was a limit on this education to transform written words to vivid verbal words. The lines become live when the actor sees the concrete mental images hidden in the words while speaking the lines. I will bring the knowledge of cognitive brain science and NLP(Neural Linguistic Programming) to investigate what mental images are and why mental images are fundamental elements of thought and emotion. In addition to that, I will examine how the muscles of the body react in the process of visualization of delicate mental images (subordinate form) and how to use the responsive muscles to express speaking materials such as intensity, pause, pitch, intonation etc. Conclusion, I will enumerate the obstacles encountered by actors in the course of practicing mental images, and suggest 'activation of breathing' as a thesis of the follow-up paper to eliminate those obstacles. This process, I intend to make mental images to be the concrete and practical information that can be applied to speak the dialogue in the play.

Network design for correction of deterioration due to hologram compression (홀로그램 압축으로 인한 열화 보정을 위한 네트워크 설계)

  • Song, Joon Boum;jang, Junhyuck;Hwang, Yunseok;Cho, Inje
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.377-379
    • /
    • 2020
  • The hologram data is having a dependence on the pixel pitch of the SLM (spatial light modulator) and the wavelength of light, and the quality of the digital hologram is proportional to the unit pixel pitch and the total resolution. In addition, since each pixel has a complex value, the amount of data in the digital hologram also increases exponentially, and the size is bound to be very large. Therefore, in order to efficiently handle digital hologram files, it is essential to reduce the file size through a codec and store it. Recently, research on enhancing image quality damaged by the codec is actively underway. In this paper, the hologram image of JPEG Pleno, which is the standard hologram data, was used, and the image quality damage that occurs whenthe holographic image is encoded and decoded through the JPEG2000, AVC, and HEVC codec is enhanced with a deep learning network to find out whether the image quality can be improved. we also compare and quantitatively find out the degree of improvement in image quality.

  • PDF

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

Recent Advances in Fine Pitch Cu Pillar Bumps for Advanced Semiconductor Packaging (첨단 반도체 패키징을 위한 미세 피치 Cu Pillar Bump 연구 동향)

  • Eun-Chae Noh;Hyo-Won Lee;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, as the demand for high-performance computers and mobile products increases, semiconductor packages are becoming high-integration and high-density. Therefore, in order to transmit a large amount of data at once, micro bumps such as flip-chip and Cu pillar that can reduce bump size and pitch and increase I/O density are used. However, when the size of the bumps is smaller than 70 ㎛, the brittleness increases and electrical properties decrease due to the rapid increase of the IMC volume fraction in the solder joint, which deteriorates the reliability of the solder joint. Therefore, in order to improve these issues, a layer that serves to prevent diffusion is inserted between the UBM (Under Bump Metallization) or pillar and the solder cap. In this review paper, various studies to improve bonding properties by suppressing excessive IMC growth of micro-bumps through additional layer insertion were compared and analyzed.

Improvement of Speech Intelligibility in Noisy Environments (잡음 환경에서의 음성 명료도 향상 기술)

  • Yoon, Jae-Yul;Kim, Jung-Hoe;Oh, Eun-Mi;Park, Ho-Chong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2009
  • In speech communications in noisy environments, speech intelligibility is seriously degraded due to the masking effect of ambient noise. In this paper, a new method to improve speech intelligibility in noisy environments is proposed. Based on the perception theory that the temporal envelope plays a major role in determining intelligibility, the proposed method uses a novel operation that enhances the fluctuation of band-wise temporal envelope and also contains pitch enhancement for improving speech naturalness. In addition, a new subjective evaluation scheme employing binaural listening is proposed in order to measure more reliable performance. The subjective performance measured with the proposed scheme shows that the proposed method improves both intelligibility and naturalness in various environments, whereas a function parameter can control the performance trade-off between intelligibility and naturalness.