• Title/Summary/Keyword: 피쳐 추출

Search Result 24, Processing Time 0.021 seconds

A Study on Facial Expression Recognition using Boosted Local Binary Pattern (Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구)

  • Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1357-1367
    • /
    • 2013
  • Recently, as one of images based methods in facial expression recognition, the research which used ULBP block histogram feature and SVM classifier was performed. Due to the properties of LBP introduced by Ojala, such as highly distinction capability, durability to the illumination changes and simple operation, LBP is widely used in the field of image recognition. In this paper, we combined $LBP_{8,2}$ and $LBP_{8,1}$ to describe micro features in addition to shift, size change in calculating ULBP block histogram. From sub-windows of 660 of $LBP_{8,1}$ and 550 of $LBP_{8,2}$, ULBP histogram feature of 1210 were extracted and weak classifiers of 50 were generated using AdaBoost. By using the combined $LBP_{8,1}$ and $LBP_{8,2}$ hybrid type of ULBP histogram feature and SVM classifier, facial expression recognition rate could be improved and it was confirmed through various experiments. Facial expression recognition rate of 96.3% by hybrid boosted ULBP block histogram showed the superiority of the proposed method.

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

Automatic Extraction of Ground Points from LIDAR data (라이다 데이터로부터 지표점의 자동 추출)

  • 이임평
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.374-379
    • /
    • 2004
  • 지표점의 추출은 DTM 생성을 위한 가장 중요한 과정이다 기존의 추출 방법은 대부분 점기반방법으로 분류될 수 있다. 점기반방법은 모든 점을 개별적으로 각각의 점이 지표를 구성하는지를 시험한다. 이 때 시험의 회수는 점의 개수와 동일하기 때문에, 특히 다량의 점을 포함한 데이터를 처리하려면 시험과 관련되어 심각한 계산량이 유발되어 시험에 보다 정교한 기준과 전략을 사용하는데 어려움이 있었다. 이로 인해 많은 연구에도 불구하고 아직 만족할만한 결과를 제공하는 방법이 개발되지 못하였다. 이에 본 연구는 시험하는 개체의 수를 줄이면서 보다 안정적인 결과를 얻을 수 있도록 점이 아닌 피쳐에 기반한 방법을 제안한다. 여기서, 피쳐란 점을 그룹핑하여 얻을 수 있는 개체를 의미한다. 제안된 방법은 먼저 점들로부터 표면패치들을 생성하고, 이어서 표면패치들로부터 표면집단들을 구성한다. 표면집단들로부터 지표를 구성하는 표면집단을 식별한 후 식별된 표면집단에 포함된 모든 점들을 지표점으로 명시한다. 제안된 방법을 항공라이다 실측데이터에 적용하여 제안된 방법의 뛰어난 성능을 실험적으로 증명하였다.

  • PDF

A study on 3D connected component labeling algorigm (3차원 연결 성분 레이블링 알고리즘에 관한 연구)

  • 최익환;이병일;최현주;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.245-248
    • /
    • 2003
  • 볼륨데이터에서 관심대상의 특징을 추출하기 위해서 3D레이블링을 3차원 세포영상의 분석에 적합한 레이블링 방법인 SIL(slice Information base labeling)을 제안하였다. SIL은 각 슬라이스 정보를 이용하여 레이블링을 수행하므로 영상의 특징에 안는 레이블링으로의 확장이 유용하고 메모리 효율이 높다. 몇 개의 실험 영상으로 다른 방법과 비교한 결과 성능면에서도 우수 결과를 얻었다. 또한 레이블링을 통해서 얻어진 피쳐값으로 세포 영상을 분석하였으며, 콘포컬 현미경 영상을 이용하였을때 실험영상에서 결과를 추출하는데 걸린 시간은 SIL방법이 기존 방법보다 2배 가량 빨랐다. 다양한 3차원 에이블링 방법 중 적용되는 영상에 따라 각기 다른 결과를 얻었지만,3차원 세포영상의 분석에는 SIL 방법이 우수하다는 결론을 얻었다.

  • PDF

Conceptual Schema Analysis for Creation of Reference Sche (참조 스키마 생성을 위한 개념적 스키마 분석)

  • 김흥수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.83-88
    • /
    • 2002
  • Large sets of conceptual schema have been constructed for database design. In recent times, the need of analytic aid for schema reuse is increasing. In this paper, it is presented analysis technique of conceptual schema, and experimented schema analysis for extraction of reference schema. It is desirable for integration of related schema to have been applied in case of similarity value above 0.6. Reference schema which is created through the analysis technique enable to describe concepts of them and can be the way of schema reuse. And a feature analysis can be effective measure to set details of analytic data which is necessary for extraction of reference schema.

  • PDF

Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning (Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류)

  • Kim, Taesu;Kim, Yeongwoo;Kim, Keunhyeong;Kim, Chul Min;Jun, Hyung Seok;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2021
  • This study explored users' emotional states identified from the wake-up words -"Hi, KIA!"- using a machine learning algorithm considering the user interface of passenger cars' voice. We targeted four emotional states, namely, excited, angry, desperate, and neutral, and created a total of 12 emotional scenarios in the context of car driving. Nine college students participated and recorded sentences as guided in the visualized scenario. The wake-up words were extracted from whole sentences, resulting in two data sets. We used the soundgen package and svmRadial method of caret package in open source-based R code to collect acoustic features of the recorded voices and performed machine learning-based analysis to determine the predictability of the modeled algorithm. We compared the accuracy of wake-up words (60.19%: 22%~81%) with that of whole sentences (41.51%) for all nine participants in relation to the four emotional categories. Accuracy and sensitivity performance of individual differences were noticeable, while the selected features were relatively constant. This study provides empirical evidence regarding the potential application of the wake-up words in the practice of emotion-driven user experience in communication between users and the artificial intelligence system.

Fully Automatic Facial Recognition Algorithm By Using Gabor Feature Based Face Graph (가버 피쳐기반 얼굴 그래프를 이용한 완전 자동 안면 인식 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • The facial recognition algorithms using Gabor wavelet based face graph produce very good performance while they have some weakness such as a large amount of computation and an irregular result depend on initial location. We proposed a fully automatic facial recognition algorithm using a Gabor feature based geometric deformable face graph matching. The initial location and size of a face graph can be selected using Adaboost detection results for speed-up. To find the best face graph with the face model graph by updating the size and location of the graph, the geometric transformable parameters are defined. The best parameters for an optimal face graph are derived using an optimization technique. The simulation results show that the proposed algorithm can produce very good performance with recognition rate 96.7% and recognition speed 0.26 sec for FERET database.

A Viewer Preference Model Based on Physiological Feedback (CogTV를 위한 생체신호기반 시청자 선호도 모델)

  • Park, Tae-Suh;Kim, Byoung-Hee;Zhang, Byoung-Tak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.316-322
    • /
    • 2014
  • A movie recommendation system is proposed to learn a preference model of a viewer by using multimodal features of a video content and their evoked implicit responses of the viewer in synchronized manner. In this system, facial expression, body posture, and physiological signals are measured to estimate the affective states of the viewer, in accordance with the stimuli consisting of low-level and affective features from video, audio, and text streams. Experimental results show that it is possible to predict arousal response, which is measured by electrodermal activity, of a viewer from auditory and text features in a video stimuli, for estimating interestingness on the video.

A Feature Based Approach to Extracting Ground Points from LIDAR Data (LIDAR 데이터로부터 지표점 추출을 위한 피쳐 기반 방법)

  • Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.265-274
    • /
    • 2006
  • Extracting ground points is the kernel of DTM generation being considered as one of the most popular LIDAR applications. The previous extraction approaches can be mostly characterized as a point based approach, which sequentially examines every individual point to determine whether it is measured from ground surfaces. The number of examinations to be performed is then equivalent to the number of points. Particularly in a large set, the heavy computational requirement associated with the examinations is obviously an obstacle to employing more sophisticated criteria for the examination. To reduce the number of entities to be examined and produce more robust results, we developed an approach based on features rather than points, where a feature indicates an entity constructed by grouping some points. In the proposed approach, we first generate a set of features by organizing points into surface patches and grouping the patches into surface clusters. Among these features, we then attempt to identify the ground features with the criteria based on the attributes of the features. The points grouped into these identified features are labeled ground points, being used for DTM generation afterward. The Proposed approach was applied to many real airborne LIDAR data sets. The analysis on the results strongly supports the prominent performance of the proposed approach in terms of not only the computational requirement but also the quality of the DTM.

Pedestrian Detection using YOLO and Tracking (얼굴 이미지 검색을 위한 Product Quantization 기반의 깊은 신경망 피쳐 매칭)

  • Jang, Young Kyun;Lee, Seok Hee;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.246-248
    • /
    • 2019
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 컴퓨터 비전의 중요한 문제 중 하나인 이미지 검색에도 이를 활용하고 있다. 특히, 이미지 검색에 사용할 수 있는 이미지 기술자 (Image descriptor)를 깊은 신경망 구조의 일부분인 Fully-connected layer에서 추출하여 사용하는 방법들이 제시되고 있고, 이를 위해 알맞은 목적함수를 설계하여 깊은 신경망을 학습하는 것이 중요해지고 있다. 딥 러닝을 통해 얻은 이미지 기술자는 실수형 데이터로서, 한 장의 이미지를 수치화하여 표현하는 데 많은 메모리를 소모하게 된다. 이를 보완하기 위해 이미지 기술자를 작은 용량의 이진코드로 mapping 하는 해싱 (hashing) 이라는 과정이 필수적이나 이에 따른 한계점이 발생한다. 본 연구에서는 실수형 데이터가 갖는 거리 계산에서의 이점과 이진코드의 장점을 동시에 살릴 수 있는 Product Quantization 방식의 이미지 검색 방법을 이용하여 한계점을 극복하였다. 우리는 제안한 방법을 얼굴 이미지 데이터 셋에 실험하였고 기존 방식보다 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF