• Title/Summary/Keyword: 피지컬 컴퓨팅 교육

Search Result 115, Processing Time 0.02 seconds

Development of Tutorial for Measuring Gravity Acceleration Using Arduino and Its Educational Application (아두이노를 활용한 중력 가속도 측정과 관련된 튜토리얼 및 교육적 활용 방안)

  • Kim, Hyung-Uk;Mun, Seong-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.69-77
    • /
    • 2022
  • Physical experiment through MBL has been used in many schools for a long time since students can check the experiment results immediately and conduct the experiment easily. However, conducting the experiment, not knowing the principle of the device or simply concentrating on the derived data has been raised as the problem of MBL experiment. To supplement this problem, this study measured the acceleration of gravity with the picket fence method, which is often used in MBL experiment, utilizing Arduino, calculated the error rate through a comparison to the actual acceleration of gravity and discussed the educational application of the experiment to measure it. As a result of the experiment, the error rate between the acceleration of gravity calculated by the experiment and the actual acceleration of gravity was about 1%, so it turned out that relatively accurate measurements were possible. Also, the sample mean of the experimental value was included in the confidence interval of 95%, so it could be concluded that it was a significant experiment. In addition, this study showed the possibility of the educational application of the experiment to measure it through the following: It can supplement the structural disadvantages of MBL; it can consider the interaction between Physics and Math; it is possible to converge with information course in STEAM education; and it is inexpensive to be equipped with the equipment. Hopefully, the physical experiment utilizing Arduino will further be revitalized in science gifted education based on this study.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

Development of a Maker Education Program Using Cement and Mold for Middle School Students and Effect on Convergence Ability for Creativity (시멘트와 거푸집을 이용한 중학교 메이커 교육 프로그램이 창의융합 역량에 미치는 효과)

  • Kim, Seong-Soo;Yoo, Hyun-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.129-138
    • /
    • 2019
  • The trend of maker education has been mainly focused on program using digital devices, but maker education programs that can make students' creative ideas instantly in various shapes and make them by hand is insufficient. Therefore, in this study, we developed a maker education program using cement and molds and analyzed Effect on the convergence ability for creativity of students. In the preparation stage, educational use cases about cement and molds and the study objects and contents were extracted through the literature review. In the development stage, teaching-learning materials were developed and validity and evaluation tools to measure convergence ability for creativity were selected. In the implementation stage, the expert validity test on the teaching-learning materials and convergence ability test for creativity was evaluated, In the evaluation stage, the effects of the whole area and sub-area of the convergence ability for creativity was analysed. As a result of the t-test for the whole area of convergence ability for creativity, the students who took the maker education program showed a significant change. The test results on the teaching-learning materials showed a positive response to the communication, cooperation ability, knowledge and humanism.

An Analysis of Research Trends Related to Software Education for Young Children in Korea (유아의 소프트웨어 교육 관련 국내 최근 연구의 경향 분석)

  • Chun, Hui Young;Park, Soyeon;Sung, Jihyun
    • Korean Journal of Child Education & Care
    • /
    • v.19 no.2
    • /
    • pp.177-196
    • /
    • 2019
  • Objective: This study aims to analyze research trends related to software education for young children, focusing on studies published in Korea from 2016 to 2019 March. Methods: A total of 26 research publications on software education for young children, searched from Korea Citation Index and Research Information Sharing Service were identified for the analysis. The trend in these publications was classified and examined respectively by publication dates, types of publications, and the fields of study. To investigate a means of research, the analysis included key topics, types of research methods, and characteristics of the study variables. Results: The results of the analysis show that the number of publications on the topic of software education for young children has increased over the three years, of which most were published as a scholarly journal article. Among the 26 research studies analyzed, 16 (61.5%) are related to the field of early childhood education or child studies. Key topics and target subjects of the most research include the curriculum development of software education for young children or the effectiveness of software education on 4- and 5-year-old children. Most of the analyzed studies are experimental research designs or in the form of literature reviews. The most frequently studied research variable is young children's cognitive characteristics. For the studies that employ educational programs, the use of a physical computing environment is prevalent, and the most frequently used robot as a programming tool is "Albert". The duration of the program implementation varies, ranging from 5 weeks to 48 weeks. In the analyzed research studies, computational thinking is conceptualized as a problem-solving skill that can be improved by software education, and assessed by individual instruments measuring sub-factors of computational thinking. Conclusion/Implications: The present study reveals that, although the number of research publications in software education for young children has increased, the overall sufficiency of the accumulated research data and a variety of research methods are still lacking. An increased interest in software education for young children and more research activities in this area are needed to develop and implement developmentally appropriate software education programs in early childhood settings.

The Effect of a Design Thinking-based Maker Education Program on the Creative Problem Solving Ability of Elementary School Students (디자인 사고 기반 메이커 교육 프로그램이 초등학생의 창의적 문제해결력에 미치는 영향)

  • Lee, Seungchul;Kim, Taeyoung;Kim, Jinsoo;Kang, Seongjoo;Yoon, Jihyun
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.1
    • /
    • pp.73-84
    • /
    • 2019
  • Maker movement is emerging as one of the key areas of the fourth industrial revolution in recent years. The maker movement is to create and share what users need using a variety of inexpensive production tools such as open source software and hardware, 3D printers and laser cutters. We think that the effect would be enhanced if design thinking is applied to elementary and middle school (K-12) class. The purpose of this study is to develop a design thinking-based maker education program and to apply it to classroom for clarify the effect on the creative problem solving ability of elementary school students. In order to verify the purpose of the research, students in the 5th-6th grades of elementary school were divided into a controlled group and an experimental group. The general lecture maker class was applied in the controlled group, and our developed design thinking-based maker class was simultaneously applied in the experimental group. The creative problem solving ability test was conducted before and after the test, and its effectiveness was verified using statistical t-test. In conclusion, this study suggests that design thinking-based maker education program has a positive effect on elementary school students' creative problem solving ability.