• Title/Summary/Keyword: 피식-포식 관계

Search Result 9, Processing Time 0.029 seconds

Application of an Augmented Predator-Prey Model to the Population Dynamics of Roe Deer in Jeju (제주도 노루의 개체수 관리를 위한 확장적 피식-포식모형의 적용에 관한 연구)

  • Jeon, Dae-Uk;Kim, Doa-Hoon
    • Korean System Dynamics Review
    • /
    • v.12 no.2
    • /
    • pp.95-126
    • /
    • 2011
  • This paper aims at developing a System Dynamics model with an augmented predator-prey interaction structure to deal with the population management of roe deer in Jeju, Korea. Although people still regard the creature as one of the important tourist attractions, there has been much debate on the issues of the appropriateness of the population size of roe deers because they have been stigmatized as crop damagers, and roadkill/poaching victims due to their natural habit to move around from the top mountain to the lowland of the island. The model is therefore to incorporate these migrating and grazing behaviors into an augmented Lotka-Volterra model coupling roe deer population in both parts of the island to that of predators and preys of the species. The authors also provide a comprehensive set of dynamic hypotheses and relevant CLD/SFD to understand the population dynamics of roe deer and co-evolving species and perform the steady-state analysis of the proposed equation system to verify the model behavior of the numerical example lastly presented in this paper.

  • PDF

Fuctional Response of Amblyseius longispinosus (Acari:Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): Effects of Prey Density, Distribution, and Arena Size (긴털이리응애의 점박이응애에 대한 기능반응: 피식자 밀도, 분포 및 면적크기의 영향)

  • 김동순;이준호
    • Korean journal of applied entomology
    • /
    • v.32 no.1
    • /
    • pp.61-67
    • /
    • 1993
  • Experiments were conducted to study the functional response of Amblyseius longispinosus Evans to egg densities (10-80) of Tetranychus urtica Koch under different egg distributions (clumped & uniform) and arena sizes (3, 9 & 16 $cm^2$). The searching success of A. longispinosus was affected by the spatial distribution and density of the prey but not by the arena size. there was a highly significant negative correlation (r=-0.85; p=0.0001) between predation amount and distances between preys. The predation response showed a type III functional response. The random predator equation satisfactorily described A. longispinosus predation. The search rate ranged from 0.1030 to 0.1504 under distribution of the prey while it ranged from 0.0546 to 0.276 under uniform distribution.

  • PDF

Distribution Pattern of the Sea Urchin Strongylocentrotus nudus in Relation to Predation Pressure in Hosan, the East Coast of Korea (동해안 삼척 호산에 서식하는 둥근성게 Strongylocentrotus nudus의 분포와 피식 패턴)

  • 유재원;손용수;이창근;김정수;한창훈;김창수;문영봉;김동삼;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • An ecological study on a sea urchin population, Strongylocentrotus nudus, a key role species in recovery of macroalgal bed, was conducted in Hosan, Samcheok area on the east coast of Korea. Three experimental plots, namely, AMB (artificially-restored macroalgal bed), BG (barren grounds) and NMB (natural macroalgal bed) were established after a pilot survey in June 2002. Distribution and abundance, grazing rates, predation pressure and predator guilds on S. nudus were estimated in three plots bimonthly from Aug. to Dec., 2002. Abundance of S. nudus was lowest, but median test diameter of the urchin was highest (Kruskal-Wallis test, p-value, p<0.001 in Aug. and p=0.003 in Oct.) in NMB In-situ grazing rate of S. nudus estimated by enclosure cage experiment in NMB was about 12 times higher in Aug. (160.0 mg seaweed/g sea urchin/day) than in Oct. (13.8). Predation intensity measured by tethering experiment was higher in NMB. Most of the predators on S. nudus were invertebrates and no fish predators were found. Predator guilds identified by the fish trap experiment using live or dead sea urchins included who]ks Neptunea arthritica, starfish Asterina pectinifera, hermit crabs Pagurus of. samuelis, Paguristes barbatus, brown shawl crabs Atergatis integerrimus and crabs Actaea subglobosa. High predation pressure on S. nudus in natural macroalgal beds was the likely cause of its low density. Elevated sea urchin density and the consequent lasting deforestation of macroalgae in barren grounds demonstrate the importance of predation pressure on sea urchins.

The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea II. Nano-and Microzooplankton (경기만 수역에서 미세생물 군집의 계절적 변동 연구 II. 미소형 및 소형 동물플랑크톤)

  • 양은진;최중기
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.78-93
    • /
    • 2003
  • To investigate seasonal variation and structure of the microbial community in Kyeonggi Bay, abundance and carbon biomass of nano-and micrzooplankton were evaluated in relation to size fractionated chlorophyll-a concentration, through the monthly interval sampling from December 1997 to November 1998. Communities of nano-and microzooplankton were classified into 4 groups such as heterotrophic nanoflagellate(HNF), ciliates, heterotrophic dinoflagellates(HDF) and zooplankton nauplii. Abundance and carbon biomass of HNF ranged from 380 to 4,370 cells ml-1(average 1,340$\pm$130 cells ml-1) and from 0.63 to 12.4 $\mu\textrm{g}$C 1-1(average 4.35$\pm$0.58 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of ciliates ranged from 331 to 44,571 cells ml-1(average 3,526$\pm$544 cells ml-1) and from 1.3 to 119.7 $\mu\textrm{g}$C 1-1(average 13.7$\pm$3.0 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of HDF ranged from 88 to 48,461 cells 1-1(average 9,034$\pm$2,347 cells 1-1) and from 0.05 to 54.05 $\mu\textrm{g}$C 1-1(average 6.9$\pm$2.4 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of zooplankton nauplii ranged from 5 to 546 indiv. 1-1(average 83$\pm$15 indiv. 1-1) and from 0.17 to 43.2 $\mu\textrm{g}$C 1-1(average 6.3$\pm$1.2 $\mu\textrm{g}$C 1-1), respectively. Eash component of microbial biomass was not different from tidal cycle except tintinnids group. Depth integrated nano-and microzooplankton biomass ranged from 124 to 1,635 mgC m-2(average 585$\pm$110 mgC m-2) and was highest in March and May. The relative contribution of each component to the nano-and microzooplankton showed difference according to seasons. Community structure of nano-and microzooplankton was dominated by planktonic ciliate group. During the study period, carbon biomass of nano-and microzooplankton was strongly positively correlated with size fractionated chlorophylla-a. It implied that prey-predator relationship between microzooplankton and phytoplankton was important in the pelagic ecosystem of Kyeonggi Bay.

Analysis of Trophic Structure and Energy Flows in the Uljin Marine Ranching Area, Korean East Sea (울진 바다목장 생태계의 영양구조와 에너지 흐름)

  • Kim, Hyung Chul;Lee, Jae Kyung;Kim, Mi Hyang;Choi, Byoung-Mi;Seo, In-Soo;Na, Jong Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.750-763
    • /
    • 2018
  • This study conducted 10 sampling sites survey 4 times to determine the trophic structure and energy flow of marine ecosystems for Uljin marine ranching area, Korean East Sea from March to October 2013. Based on the ecological characteristics of biological species, one used the non-Metric Multidimensional Scaling method based on the similarity of species. A total of 19 classified species groups formed categories including, top predators, seabirds, large pelagic fishes, small pelagic fishes, rockfishes, pleuronectiformes, benthic fishes, semi-benthic fishes, cephalopods, benthic feeders, epifauna, bivalves, abalone, Cnidaria, zooplankton, benthic algae, microalgae, phytoplankton and detritus. The biomass, production/biomass, consumption/biomass, diet composition data of each species groups to input data used in Ecopath mode estimated the trophic structure and energy flow of marine ecosystems in the Uljin marine ranching area. One estimated each species groups on the trophic level from 1 to 5.687. The sum of all consumption was estimated at $229.7t/km^2/yr$ and the sum of all exports was as estimated $3,432.4t/km^2/yr$. Total system throughput was at $6,796.2t/km^2/yr$, and the sum of all production was estimated at $3,613.1t/km^2/yr$. Net system production according to these results was estimated at $3,490.3t/km^2/yr$ and total biomass (excluding detritus) was estimated at $167.3t/km^2/yr$ in the Uljin marine ranching area.

Spatial Distribution and Community Structure of Heterotrophic Protists in the Central Barents Sea of Arctic Ocean During Summer (북극해 하계 중앙 바렌츠해에서 종속영양 원생동물의 군집구조와 공간적 분포)

  • Yang, Eun-Jin;Choi, Joong-Ki;Kim, Sun-Young;Chung, Kyung-Ho;Shin, Hyoung-Chul;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.567-579
    • /
    • 2004
  • To investigate the spatial distribution and community structure of heterotrophic protists, we collected water samples at 23 stations of central Barents Sea in August, 2003. This study area was divided into three area with physico-chemical and chi-a distribution characteristics: Area I of warm Atlantic water mass, Area III of cold Arctic water mass and Area II of mixed water mass. Chl-a concentration ranged from 0.18 to $1.04{\mu}g\;l^{-1}$ and was highest in Area I. The nano-sized chi-a accounted fur more than 80% of the total chi-a biomass in this study area. The contribution of nano-sized chi-a to total chi-a was higher in Area I than in Area II. Communities of heterotrophic protists were classified into three groups such as heterotrophic nanoflagellates (HNF), ciliates and heterotrophic dinoflagellates (HDF). During the study periods, carbon biomass of heterotrophic protists range from 11.3 to $38.7{\mu}gC\;l^{-1}$ (average $21.0{\mu}gC\;l^{-1}$), and were highest in Area I and were lowest in Area III. The biomass of ciliates ranged from 4.2 to $19.3{\mu}gC\;l^{-1}$ and contributed 31.5-66.9% (average 48.1%) to the biomass of heterotrophic protists. Ciliates to heterotrophic protists biomass accounted fur more than 50% in Area I. Heterotrophic dinoflagellates biomass ranged from 5.7 to $18.4{\mu}gC\;l^{-1}$ and contributed 27.1 to 56.3% (average 42.8%) of heterotrophic protists. Heterotrophic dinoflakellates to heterotrophic protists biomass accounted fur about 50% in Area III. Heterotrophic nanoflageltate biomass ranged from 0.5 to $3.4{\mu}gC\;l^{-1}$ and contributed 3.2 to 19.6% (average 9.2%) of heterotrophic protists. Heterotrophic nanoflagellates to heterotrophic protists biomass accounted fur more than 10% in Area III. These results indicate that the relative importance and structure of heterotrophic protists may vary according to water mass. Heterotrophic protists and phytoplankton biomass showed strong positive correlation in the study area The results suggest that heterotrophic protists are important consumers of phytoplankton, and protists might play a pivotal role in organic carbon cycling In the pelagic ecosystem of this study area during the study period.

Nutritional Characteristics and Stability in Cell of the Yac-Sun Tea for Caronary Heart Disease (관상동맥 질환의 예방을 위한 약선차의 식품영양학적 구성 및 안전성 평가)

  • Kim, Woon-Ju;Cho, Hwa-Eun;Park, Sung-Hye
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.219-225
    • /
    • 2007
  • This study was performed to provide basic ideas as understanding and application for oriental medicinal cuisine (Yak-Sun). To develop medicinal cuisine, it is necessary to grasp the theoretical system. And to develop medicinal cuisine for health enhancement, it is also required not only to consider constitutions but also to suggest the need of knowledge for moderation in terms of regimen along with the theory of oriental medicine. Also to develop medicinal cuisine according to the perspective of oriental medicinal theory, what should be taken into account is not only the understanding of the characteristics of food materials, but also the properties of them that the theory of oriental medicine. Lastly the scientific effect of the medicinal cuisine which is developed according to the oriental medicinal theory. And it is believed to De essential for the government to make effects to set a standard and laws to validate the medicinal effects and the process of assessment so that the systematic development can be encouraged, and to prepare guidance to food development for national health improvement. This research was planned and executed to evaluate how the composition of Yak-sun(oriental diet therapy) can effect health conditions of people who are suffering from diet-related diseases like cardiovascular related disease. by taking Yak-sun in a form of nutritional supplement with our daily meals. We produced Yak-sun tea with Mansam, Hwanggi, Tanggi and Paekchak and observed nutritional composition. We concluded that we could apply the components not only in a form of tea, but also in other forms of various food. The information we received from this conclusion will be a basic information on how we can apply oriental medicinal resources into other food and will also be a steppingstone for medicinal herbs to step foot in the field of functional food research, which already draws sizable attention world-wide.

Reproductive Progress and Heavy Metal Contamination of Feral Pigeons (Columba livia) in Seoul and the Ansan Industrial Complex areas (도심 및 공단지역에 서식하는 비둘기의 중금속 축적과 번식 경과 비교)

  • 남동하;이두표;구태회
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • This study focused on relationships between Pb and Cd concentrations and the difference of success reproductive progress in urban (Seoul) and industrial complex (Ansan) areas. Results of the Pb analysis for the feral pigeons from Seoul (egg contents:1.64 $\mu\textrm{g}$ wet $g^{-1}$, adults in bones: 29.5 $\mu\textrm{g}$ wet $g^{-1}$ and the Ansan industrial complex (egg contents: 1.13 $\mu\textrm{g}$ wet $g^{-1}$, adults in bones: 10.5 $\mu\textrm{g}$ wet g-1) showed that the Pb level of eggs and adults is significantly different between the two colonies (p<0.05). Cd concentrations in liver and kidneys of adult pigeons were also significantly different between Seoul(liver: 0.24 ${\mu}g$ wet $g^{-1}$, kidney: 1.05 $\mu\textrm{g}$ wet $g^{-1}$ and the Ansan (liver: 0.14 $\mu\textrm{g}$ wet $g^{-1}$, kidney: 0.43 $\mu\textrm{g}$ wet $g^{-1}$ colonies (P<0.05). Clutch size of Feral Pigeons living in Seoul was similar between the two colonies, 1.9$\pm$0.3 in Seoul and 2.0$\pm$0.0 in Ansan. The length, breadth, and thickness of eggs were not significantly different between the two colonies (p>0.05). Incubation period in Seoul (17.8 days) did not differ from the Ansan (17.4 days). No difference in growth rate (body weight, wing length, and tarsus length) was found between the two test groups (p>0.05). In Seoul, 65.2% were hatching, and 42.1% fledging. The Proportion of hatching and fledging in the Ansan was 60.7% and 45.0%, respectively. The significant differences between the two colonies for reproductive sucess were not found (p>0.05). With regard to the reproductive effects to the heavy metals, the Pb and Cd concentrations feund in the two colonies were not as high as those considered in results of toxic effects in other species.

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.