본 연구에서는 입력 얼굴 영상에서 눈의 윤곽선과 눈동자 영역을 추출하여 시선을 추정하는 시스템을 설계 및 구현한다. 눈 윤곽선과 눈동자 영역을 효율적으로 추출하기 위하여 먼저 입력 영상으로부터 얼굴 영역을 추출한다. 얼굴 영역 추출을 위하여 아시아인 얼굴 영상 셋을 확보하여 아시아인 피부색에 대한 YCbCr 범위를 사전에 정의하였고, 정의된 피부색 범위값에 따라 피부영역을 검출한다. 최대크기 피부 영역을 얼굴후보 영역으로 지정하고 검출된 얼굴 후보영역에 대한 상위 50%의 관심 영역 내에서 눈윤곽선과 색상 특성 분석을 이용한 눈 영역 검출 알고리즘을 수행하여 기존의 Haar-like feature 특성기반 눈 영역 검출방법에 비해 타이트한 눈 영역을 검출한다. 눈의 윤곽선을 포함하는 관심영역 전체를 기준으로 눈 영역을 3등분하고, 추출된 눈동자의 위치가 3등분된 영역에서 어느 영역에 중점적으로 위치하고 있는지를 분석하여 좌, 우, 정면 시선 방향을 추정한다. 본 연구에서는 20명의 실험자에 대한 5,616 장의 테스트 영상을 이용한 시선방향 추정 실험에서 약 91%의 정확도를 획득한다.
본 논문에서는 로봇의 시각시스템에 효과적으로 적용할 수 있는 얼굴 추적 방법을 제안하였다. 제안한 알고리즘은 동영상의 움직임 영역을 검출한 후 얼굴 영역을 추적한다. 동영상의 움직임 검출은 연속되는 2개의 프레임을 사용하여 차영상을 구한 후, 잡음을 제거하기 위한 방법으로 메디안 필터와 침식 및 팽창연산을 사용하여 움직임 영역을 검출한다. 움직임 영역에서 피부색을 추출하기 위하여 표본영상의 칼라 정보를 이용하였다. 칼라정보의 MIN-MAX값을 퍼지화 데이터로 멤버십 함수를 생성한 후, 유사도를 평가하여 피부색 영역과 배경영역을 분리하였다. 얼굴 후보영역에 대하여 CMY 칼라 공간 C 채널에서 눈을 검출하고, YIQ 칼라 공간 Q 채널에서 입을 검출하였다. 지식기반으로 검출된 눈과 입의 특징을 찾아가며 얼굴영역을 추적하였다. 실험영상으로는 10명 각각에 대하여 150프레임의 동영상 총 1,500프레임을 입력받아 실험한 결과, 1,435프레임의 영상에 대하여 움직임 영역이 검출되어 95.7%의 프레임 검출율을 보였으며, 1,401개에 대한 얼굴을 추적 97.6%의 우수한 얼굴 추적결과를 나타내었다.
본 논문에서는 퍼지 방법을 적용하여 손금을 추출하고 분석하는 방법을 제안한다. 본 논문에서는 영상으로부터 손금을 추출하기 위해서 획득된 영상을 YCbCr 컬러 공간으로 변환한다. YCbCr 컬러 공간에서 Y:65~255, Cb:25~255, Cr:130~255에 해당되는 피부색 정보를 추출하고 이 피부색 정보를 임계치로 설정하여 손 영역을 추출한다. 추출된 손 영역에서 내부 픽셀의 3:1 이상, 전체 영상의 2:1 이상인 손의 형태학적 정보와 8 방향 윤곽선 추적기법을 이용하여 잡음을 제거한다. 잡음이 제거된 영상에서 손금을 추출하기 위해서 스트레칭 기법과 소벨 마스크를 이용하여 에지를 추출한다. 추출된 에지 영상에서도 미세한 잡음이 존재하므로 퍼지 이진화 기법을 적용하여 이진화 한다. 이진화된 영상에서 손금의 형태학적 정보를 이용하여 손의 윤곽선을 제외한 손금 영역을 추출한다. 추출된 손금 영역은 동치 테이블을 이용하는 연결 영역 검색 기법과 퍼지 추론 기법을 적용하여 개별 손금의 중요선을 추출하고 분석한다. 다양한 손금 영상을 대상으로 실험한 결과 제안된 방법 이 기존의 손금 추출 방법보다 손금을 분석하는데 효율적인 것을 확인하였다.
얼굴영상을 효율적으로 처리하기 위해선 먼저 인력영상에서 얼굴영역과 얼굴을 구성하는 각 요소를 검출하고 얼굴의 회전각을 추정하는 전처리과정이 필요하다. 본 논문에서는 다양한 얼굴의 크기와 머리회전, 조명의 변화가 허용되고 피부색과 비슷한 배경이 얼굴에 병합되는 경우에도 얼굴과 요소들(눈, 입)을 강건하게 검출할 수 있는 방법을 제안한다. 변환된 HSV 컬러 좌표계상의 대역적 피부 색상정보와 히스토그램을 이용한 피부 색상정보로 얼굴후보영역을 지정한 뒤, 같은 방법으로 얼굴후보영역 안에서 입술영역을 검출한다. 입술영역의 횡축 기울기로 x축에 대한 회전각을 추정한 후, 얼굴의 모양정보와 요소의 위치정보를 이용해 얼굴임을 확정한다. 다음으로 양안의 조합으로 이루어진 부분 템플릿매칭을 통해 눈을 검출한 뒤, 얼굴의 넓이를 참조한 3차원 공간상에서의 눈의 위치를 계산하여 y축 회전각을 추정한다. 다양한 얼굴영상에 대해 실험을 실시한 결과, 본 알고리즘의 유효성을 확인하였다.
The colors of apparel have a close relationship with the facial color types of consumers. To extract the favorable colors that flatter to consumer's facial color types, the facial colors of Korean females were analyzed. With color meter JX-777, 2 points of face were measured and classified into 3 clusters that had similar hue, value and chroma. Other new 10 college girls were measured and 3 subject among them were selected by the criteria that choose new subjects who have the classified facial color types. 175 respondents answered the degree of becomingness of color samples on three subjects. Data were analyzed by K-means cluster analysis, ANOVA and Duncan multiple range test using SPSS Win. 12. Findings were as follows: 1) 324 subjects who had YR facial colors were classified into 3 facial color groups. The average facial color Type 1 was 4.82YR 6.47/3.70 and composed 48.88% among total observations. Type 2 was 5.99YR 6.12/4.12 and 30.25%. Type 3 was 5.15YR 7.07/4.97 and 20.99% respectively. 2) Favorable colors for Type 1 were 18 colors that belonged to 'a' group from among colors that were divided into a, b, c group by Duncan post hoc test. 3) Type 2 showed that this type had many unfavorable colors. Unfavorable colors were 18 colors that belonged to 'c' by Duncan test. 4) Type 3 showed that black is the most favorable color and 18 colors were at middle level, which belonged to 'b' from among 18 colors that were divided into a, b, and c by Duncan test.
실시간 인체 검출에 대한 관심이 높아짐에 따라 피부색을 통한 인체 검출에 대한 연구가 활발히 진행되고 있다. 하지만 대다수 기존 피부 탐지 방법은 정적인 피부색 모델을 이용하기 때문에 색 왜곡이 발생한 영상에서 낮은 탐지율을 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 경사도 맵과 채도, YCbCr 공간의 Cb, Cr 요소를 퍼지로 분류하는 방법을 사용하여 피부영역을 탐지하는 기법을 제시한다. 제안하는 방법의 기본적인 절차는 경사도 맵 생성, 채도 맵 생성, CbCr 맵 생성, 퍼지 분류, 피부영역 이진화 순이다. 이 방법은 색상 이외의 특징을 이용하여 조명, 인종, 나이, 개인차 등에 상관없이 강건하게 피부를 탐지하는 것에 중점을 두고 있다. 색상 이외의 피부 특징은 비피부영역과의 경계가 모호하여 구분이 명확하지 않다. 이를 해결하기 위해 경사도, 채도와 색상 특징간의 관계를 소속함수로 정의하고 이를 이용하여 108가지의 퍼지 규칙을 생성하여 피부영역을 탐지한다. 제안한 방법의 검출 정확도는 86.35%로 기존 방법보다 2~5 % 우수함을 확인하였다.
본 논문에서는 사람의 신체 일부분을 추적하는 시스템을 위해서 피부영역을 추출하고 여러 개의 영역을 추적하는 다중 CAMShift 알고리즘(Multi Continuously Adaptive Mean Shift Algorithm)을 제안하였다. 입력 영상에서 피부영역을 추출하기 위해 영상의 RGB의 특정값을 기준으로 피부색에 적응적인 임계값을 적용하였다. 이때 적용된 피부영역을 양손, 얼굴 등에 초기 윈도우를 설정하였다. 이 영역들을 추적함에 있어 영역들 사이에 폐색 영역을 회피하기 위해 가우시안 배경 모델(Gaussian Background Model)을 사용하여 각 추적 영역들을 제한하였다. 또한 폐색영역에 가중치를 부가하여 확률분포영상에서 중심값을 이동시켜 폐색 영역을 회피하였다. 실험 결과 다중 물체들에 강인한 추적을 보이고 유사한 색상을 갖는 물체의 폐색 시에도 우수한 결과를 보임을 확인하였다.
The colors of apparel are getting more important to give the differentiated character on fiber and fabrics. This study was to extract the favorable colors that become to facial color types. Research was carried out to classify the facial colors into several similar facial color groups. With JX-777, 2 points of face: forehead and cheek, were measured and classified into 3 facial color types. Sample size was 418 Korean adult males and other 15 of new males subjects. New chosen 3 subjects who had the classified facial color types, wore silver gown and black hat on his head to minimize the interaction of the clothe color an hair. The 40 standardized color samples were used to extract the favorable colors. 187 respondents answered the degree of becomingness of color samples on 3 facial color types. Data were analyzed by K-means cluster analysis, ANOVA and Duncan multiple range test using SPSS Win. 12. Findings were as follows: 1. 418 subjects who had YR colors were classified into 3 kinds of facial color groups. Type 1 was 4.59YR 5.89/5.12, Type 2 was 5.61 YR 5.41/4.79 and Type 3 was 4.38YR 6.49/4.89 respectively. 2. Favorable colors for Type 1 were 2 colors that belonged to ' a ' group from among colors that were divided into a, b, c group and 18 colors that belonged to ' a ' group from among colors that were divided into a, b group by Duncan post hoc test. 3. Type 2 showed that this type had many unfavorable colors. Unfavorable colors were 16 colors that belonged to ' c ' by Duncan test. 5. Favorable colors for Type 3 were 14 colors that belonged to ' a ' from among colors that were divided into a, b, c and 16 colors that belonged to ' a ' from among colors that were divided into a, b by Duncan test.
본 논문에서는 비디오 카메라를 통하여 획득한 연속적인 영상에서 사람의 머리를 인식하고 추적하는 시스템을 구현한다. 사람의 머리를 인식하기 위한 특징 벡터로서 얼굴 표면상의 특성인 사람의 피부색과 형태상의 특성인 타원 모델링을 이용한다. 또한 복잡한 배경으로부터 움직인 영역을 획득하기 위하여 시변 에지 검출 방법을 사용하고 획득된 영상에서 물체의 움직임을 판별하기 위하여 수직 투영 방법을 이용한다. 설정된 움직임 영역부분에 대하여 피부색을 갖고 있는 여러 개의 얼굴 후보영역을 설정하고 사람의 얼굴을 대표할 수 있는 타원 매핑을 적용하여 가장 최적으로 매핑되는 영역을 사람의 얼굴 부분으로 인식한다. 본 논문에서 제안한 방법은 사람 얼굴이 360도 회전하는 경우와 부분적으로 가려진 경우 그리고 좌우로 기울어진 경우에서도 우수한 성능을 보여주고 있다. 본 논문에서는 움직임 기반 추적 방법과 인식 기반 추적 방법을 이용하여 사람의 얼굴 부분이 빠르게 움직이는 경우에도 정확한 사람 얼굴 추적이 가능하도록 한다.
기존 모션 캡쳐의 경우, 고가의 장비나 사용의 복잡도, 동작자의 움직임 제한 등 모션 캡쳐의 어려움이 있었다. 최근 실시간으로 모션 캡쳐가 가능한 컴퓨터 비젼 기반 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 다시점 영상으로부터 쉽고, 빠르게 추출할 수 있는 피부색과 정확한 3차원 복원을 위한 2차원 영상 좌표 보정을 사용하여 효율적인 다시점 영상 분석 알고리즘을 제안한다. 동작자의 피부색을 검출하고, 카메라 보정 및 에피폴라 기하학 정보를 이용하여 보다 정확한 영상 분석, 그라고 칼만 필터(Kalman filter)를 사용한 추적 등을 통해 보다 안정적인 모션 캡쳐가 가능하게 된다. 실험결과를 통하여, 제안된 방법은 보다 정확한 위치 추정 및 살시간 모션 캡쳐를 위한 알고리즘임을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.