• Title/Summary/Keyword: 피복콘크리트

Search Result 333, Processing Time 0.022 seconds

Eccentric Axial Load Test for Concrete-Filled Tubular Columns Encased with Precast Concrete (프리캐스트 콘크리트에 의해 피복된 콘크리트충전 강관기둥의 편심압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Kim, Sung Bae;Park, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2014
  • In this paper, concrete-filled steel tubular columns encased with precast reinforced concrete were studied. Four eccentrically loaded columns and a concentrically loaded column were tested to investigate the axial load-carrying capacity. The test parameters were the use of fiber reinforcement for cover concrete, eccentricity, column length, and lateral reinforcement. The maximum axial loads of the specimens agreed with the nominal strengths predicted by KBC 2009. However, in some specimens, the load carrying capacity quickly decreased after the peak strength due to spalling of the cover concrete.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

An Experimental Study on the Properties of Strength for Lightweight Concrete of Coated Scoria Lightweight Aggregate (피복 화산암재를 이용한 경량콘크리트의 강도특성에 관한 실험적연구)

  • 이시우;서치호
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.61-68
    • /
    • 1990
  • This experimental study is aimed to investigate the coating method of scoria lightweight aggregate for reo duction of water absorption and the physical dynamic characteristics of coated-scoria jightweight aggregate con¬crete. The coating methods are as follows: I) Non-coating method. II) Coating method of only cement paste. rn) Coating mehtod of surface-coating agent after coating by cement paste. IV) Coating method of only surfaee-coating agent. V) Coating method of cement pasted after coating by surface-coating agent. The summerized conclusion are as fallows ; 1) Specific gravity and the rate of water absorption were lowest when aggregate was covered by only surface-coating agent, especially, rate of absorption was about 10% of non-coating aggregate. 2) Coated-aggregate were about 0.87~0.97t/m3 and lightweight concrete made of coated-aggre¬gates were 1.80~ 1.94 t/m3 in unit weight. 3) Compressive strength of the lightweight concrete made of cement pasted-coating aggregate was about 200~215kg/crrl. 4) The higher the rate of water absorption of coarse aggregate, the higher the rate of deterioration of compressive strength.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Spalling Analysis of High-Strength Reinforced Concrete Columns under High Temperature (고온에 노출된 고강도 콘크리트 기둥의 폭렬해석)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • The spalling analysis of high strength concrete columns needs a very complex and difficult process accounting for peeling of cover concrete as well as thermal, thermo-stress and hygro-transfer phenomena. However, the study on the spalling analysis method is insufficient. The practical spalling analysis algorithm is developed in this study, which formulates a vapor pressure equation as the parameter of temperature and cover depth and uses the compatibility condition In results of the spalling analysis, as the concrete strength increases and the content of PP fiber decreases the degree of spalling increases. This shows a similar result as the previous experimental study. Therefore the developed algorithm suggested in this study is expected to be useful in predicting the spalling of high strength concrete columns.

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion (철근부식에 의한 철근콘크리트 구조물의 균열거동)

  • 오병환;김기현;장승엽;강의영;장봉석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.851-863
    • /
    • 2002
  • Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.

An Experimental Study on the Fire Resistance Performance of the Reinforced Concrete Columns According to the Cross Section Size and Depth of Concrete Cover (단면크기 및 피복두께 변화에 따른 철근콘크리트 기둥의 내화성능에 관한 실험적 연구)

  • Cho, Kyung-Suk;Yeo, In-Hwan;Cho, Bum-Yeon;Kim, Heung-Youl;Min, Byung-Yeol
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • Recent researches of the fire resistance in concrete focus on how to secure relevant functions in the high strength concrete. However, the demand of normal strength concrete less than 40 MPa takes most of the total concrete demand. Therefore, fire resistance study needs to cover not only high strength concretes but also normal strength concretes. This study evaluated the fire resistance performance of 40 MPa concrete columns, taking the concrete covering thickness and the size of section as variables. Consequently, the fire resistance performance improved as the section size and the covering thickness became larger.

An Experimental Study on the Fireproof Covering Thickness of High Strength Concrete Members with Spray Coating (뿜칠피복재를 사용한 고강도 콘크리트 부재의 내화피복두께에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.41-46
    • /
    • 2010
  • High strength concrete (HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. Therefore, this study is concerned with experimentally investigation of fire resistance at high temperature due to fireproof material covering thickness in addition to concrete cover. From the test result, it was appeared that the use of fireproof material results in good performance for fire resistance and spalling prevention, and the optimal fireproof covering thickness is 1~3mm. On the other hand, the temperature was rapidly increased by explosive spalling within 30 minutes and showed very little rise caused by evaporation heat after then. It was also found that the void channel was remained at high temperature as PP fiber melts at about $200^{\circ}C$, and the pore pressure in concrete was decreased.