• Title/Summary/Keyword: 피복변화

Search Result 970, Processing Time 0.03 seconds

Simulation of Evapotranspiration in Macroscale Basins Using SLURP Model (SLURP 모형을 이용한 대규모 유역에서의 증발산량 모의)

  • Hong, Seung-Jin;Kim, Byung-Sik;Baeck, Seung-Hyub
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.383-383
    • /
    • 2011
  • 증발산은 유출량과 같은 다른 수문순환 요소들에 비해 가장 만족스럽지 못하게 설명되는 부분이다. 왜냐하면 증발산은 직접 측정 할 수 있는 것이 아니라 물 수지 등과 같은 간접적인 방법을 통해 추정되기 때문이다. 대부분의 증발산량 산정 모형들은 너무나 많은 종류의 기상자료를 입력자료로 요구하기 때문에 현실적으로 수문학적 모형에 적용되기는 어려운 실정이다. 이에 대해 본 연구에서는 준분포 수문모형인 SLURP 모형을 이용하여 토지피복변화에 따른 증발산량의 변화를 분석하였다. SLURP 모형은 유역 내에서의 증발산량을 산정하기 위해 기상요소뿐만 아니라 토양습윤량의 변화를 고려할 수 있으며 토지피복변화를 반영할 수 있다. 대상유역으로는 우리나라의 5대강 유역을 대상으로 하였으며, SLURP 모형에 탑재되어 있는 Morton CRAE (Complementary Relationship Areal Evapotranpiration) 모형을 이용하여 토지피복별 증발산량을 산정하였다. 5대강유역을 대상으로 토지피복변화분석 및 그에 따른 증발산량 변화를 모의하여 증발 및 증산량의 변화를 확인하였다.

  • PDF

Outlook Analysis of Future Discharge According to Land Cover Change Using CA-Markov Technique Based on GIS (GIS 기반 CA-Markov 기법을 이용한 토지피복 변화에 따른 미래 유출량 전망 분석)

  • Park, Jin-Hyeog;No, Sun-Hee;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.25-39
    • /
    • 2013
  • In this study, the change of the discharge according to the land cover change which acts as one of dominant factors for the outlook of future discharge was analyzed using SWAT(Soil and Water Assessment Tool) model for Yongdam and Daecheong Dam Watershed in the Geum River Basin. The land cover maps generated by Landsat TM satellite images in the past 1990 and 1995 were used as observed data to simulate the land cover in 2000 by CA-Markov serial technique and after they were compared and verified, the changes of land cover in 2050 and 2100 in the future were simulated. The discharge before and after the change of land cover by using input data of SWAT model was compared and analyzed under the A1B scenario. As a result of analyzing the trend in the elapses of year on the land cover in the Geum River Basin, the forest and rice paddy class area steadily decreased while the urban, bare ground and grassland classes increased. As a result of analyzing the change of discharge considering the future change of the land cover, it appeared that the discharge considering the change of land cover increases by 1.83~2.87% on the whole compared to the discharge not considering the change of land cover.

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin (기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석)

  • Kim, Jin Soo;Choi, Chul Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

Application of KOMSAT-2 Imageries for Change Detection of Land use and Land Cover in the West Coasts of the Korean Peninsula (서해연안 토지이용 및 토지피복 변화탐지를 위한 KOMPSAT-2 영상의 활용)

  • Sunwoo, Wooyeon;Kim, Daeun;Kang, Seokkoo;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.141-153
    • /
    • 2016
  • Reliable assessment of Land Use and Land Cover (LULC) changes greatly improves many practical issues in hydrography, socio-geographical research such as the observation of erosion and accretion, coastal monitoring, ecological effects evaluation. Remote sensing imageries can offer the outstanding capability to monitor nature and extent of land and associated changes over time. Nowadays accurate analysis using remote sensing imageries with high spatio-temporal resolution is required for environmental monitoring. This study develops a methodology of mapping and change detection in LULC by using classified Korea Multi-Purpose Satellite-2 (KOMPSAT-2) multispectral imageries at Jeonbuk and Jeonnam provinces including protected tidal flats located in the west coasts of Korean peninsula from 2008 to 2015. The LULC maps generated from unsupervised classification were analyzed and evaluated by post-classification change detection methods. The LULC assessment in Jeonbuk and Jeonnam areas had not showed significant changes over time although developed area was gradually increased only by 1.97% and 4.34% at both areas respectively. Overall, the results of this study quantify the land cover change patterns through pixel based analysis which demonstrate the potential of multispectral KOMPSAT-2 images to provide effective and economical LULC maps in the coastal zone over time. This LULC information would be of great interest to the environmental and policy mangers for the better coastal management and political decisions.

An analysis of the coastal topography and land cover changes in the Haeundae Beach using GIS/RS (GIS/RS를 이용한 해운대 해수욕장의 해안지형 및 토지피복 변화 분석)

  • Yang Ji-Yeon;Choi Chul-Uong;Hong Hyun-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.63-67
    • /
    • 2006
  • 본 연구에서는 해안침식이 진행되고 있는 해운대 해수욕장의 장기 해안지형 변화 및 인근지역의 토지피복 변화에 대해 분석하였다. 지난 60여 년간의 항공사진을 이용하여 해안선을 추출하고 이를 수심측량 및 GPS측량 자료를 이용하여 조위보정한 후, 해빈면적을 추출하여 해안지형 변화를 분석하였다. 또한 환경부 토지피복 세분류를 기준으로 하여 육안판독을 통해 13개년도의 토지피복도를 제작하고 토양유실량을 산정하여 연도별 토지피복 변화를 분석하였다. 그 결과, 해운대 해수욕장의 해안선이 점진적으로 후퇴하고 있으며 해수욕장 면적이 전체적으로 감소하고 있는 것으로 나타났다. 춘천천 복개 및 도시개발에 의한 모래 공급원 차단이 이러한 해안침식에 영향을 주는 인위적 원인이라고 사료된다.

  • PDF

Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model (지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향)

  • Suh, Myoung-Seok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.75-90
    • /
    • 2005
  • This study examines the impacts of land cover changes on the East Asia summer monsoon with the National Center for Atmospheric Research Regional Climate Model (NCAR RegCM2), coupled with Biosphere Atmosphere Transfer Scheme (BATS). To assess the goals, two types of land cover maps were used in the simulation of summer climate. One type was NCAR land cover map (CTL) and the other was current land cover map derived from satellite data (land cover: LCV). Warm and cold surface temperature biases of $1-3^{\circ}C$ occurred over central China and Mongolia in CTL. The model produced excessive precipitation over northern land area but less over southern ocean of the model domain. Changes of biophysical parameters, such as albedo, minimum stomatal resistance and roughness length, due to the land cover changes resulted in the alteration of land-atmosphere interactions. Latent heat flux and wind speed in LCV increased noticeably over central China where deciduous broad leaf trees have been replaced by mixed farm and irrigated crop. As a result, the systematic warm biases over central China were greatly reduced in LCV. Strong cooling of central China decreased pressure gradient between East Asian continent and Pacific Ocean. The decreased pressure gradient suppressed the northward transport of moisture from south China and South China Sea. These changes reduced not only the excessive precipitation over north China and Mongolia but also less precipitation over south China. However, the land cover changes increased the precipitation over the Korean Peninsula and the Japan Islands, especially in July and August.

Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map (토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지)

  • Park, Nyunghee;Kim, Donghak;Ahn, Jaeyoon;Choi, Jaewan;Park, Wanyong;Park, Hyunchun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1075-1087
    • /
    • 2017
  • In this study, we tried to utilize results of the change detection analysis for satellite images as the basis for updating the land cover map. The Sequential Spectral Change Vector Analysis ($S^2CVA$) was applied to multi-temporal multispectral satellite imagery in order to extract changed areas, efficiently. Especially, we minimized the false alarm rate of unsupervised change detection due to the seasonal variation using the direction information in $S^2CVA$. The binary image, which is the result of unsupervised change detection, was integrated with the existing land cover map using the zonal statistics. And then, object-based analysis was performed to determine the changed area. In the experiment using PlanetScope data and the land cover map of the Ministry of Environment, the change areas within the existing land cover map could be detected efficiently.

Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin (대표농도경로 (RCP) 시나리오에 따른 회야강 유역의 미래 유출 및 유사 변화 분석)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2014
  • This study is analyze future climate and land cover change affects behaviors for amount of streamflow and sediment discharge within basin. We used the climate forecast data in RCP 4.5 and 8.5 (2011-2100) which is opposite view for each other among RCP scenarios that are discussed for 5th report for IPCC. Land cover map built based on a social economic storyline in RCP 4.5/8.5 using Logistic Regression model. In this study we set three scenarios: one scenario for climate change only, one for land cover change only, one for Last both climate change and land cover change. It simulated amount of streamflow and sediment discharge and the result showed a very definite change in the seasonal variation both of them. For climate change, spring and winter increased the amount of streamflow while summer and fall decreased them. Sediment showed the same pattern of change steamflow. Land cover change increases the amount of streamflow while it decreases the amount of sediment discharge, which is believed to be caused by increase of impervious Surface due to urbanization. Although land cover change less affects the amount of streamflow than climate change, it may maximize problems related to the amount of streamflow caused by climate change. Therefore, it's required to address potential influence from climate change for effective water resource management and prepare suitable measurement for water resource.

리모트센싱 데이터를 이용한 컴퓨터그래픽에 의한 도시 토지피복 및 녹지경관의 변화 특성

  • 한갑수;김경남
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.351-353
    • /
    • 2003
  • 위성데이터를 이용한 토지피복분류에 의한 녹지의 경년변화의 특성 및 표고데이터와의 중첩에 의한 CG의 작성에 의해 경관으로서의 토지피복의 경년별 변화특성을 파악하였다. 1989년에서 2000년에 걸쳐 녹지는 약 3.9% 감소하였으며, 경관화상을 통해서는 약 2.3% 감소한 것으로 분석되었다 평면적인 녹지의 감소가 경관상의 녹지량의 감소율과 깊은 관련이 있는 것이 확인되었다.

  • PDF