• Title/Summary/Keyword: 피로 설계

Search Result 1,085, Processing Time 0.035 seconds

A Study on the Static and Fatigue Behavior of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 정적 및 피로거동)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Lee, Sang Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.725-736
    • /
    • 2004
  • A new type of girder, called steel-confined prestressed concrete girder (SCP girder), has been developed, which maximizes the structural advantages of concrete, steel, and PS tendon, and improves on the shortcomings of steel plate girder, PSC I-girder, and preflex girder bridge for use in the construction of middle- or long-span bridges. To verify the propriety of design, structural safety, and applicability of this girder, a static load test was carried out (Kim et al.., 2002). Since the main damage typically sustained by steel bridges results from the fatigue caused by the repetition of traffic loads, fatigue safety must therefore be guaranteed in applying the SCP girder in the construction of real bridges. In this study, a fatigue test was carried out to investigate fatigue behavior and provide basic data for fatigue design. Based on the fatigue test, the fatigue safety of the girder was estimated. For the fatigue test, 10-m specimens were designed for a standard-design truckload (DB-24). A static load test was also performed before the fatigue test to analyze the structural behavior of the specimens. After the fatigue test, outer steel plates were removed to observe the condition of the concrete in the girder.

A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account (용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구)

  • Baek, Seung-Yeb;Yun, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1137-1143
    • /
    • 2010
  • This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude $(\sigma_a)_R$, which includes the welding residual stress in gas welds, is proposed $(\sigma_a)_R$ on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude $(\sigma_a)_R$ at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the $(\sigma_a)_R-N_f$ relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using $(\sigma_a)_R$.

A Study on the Simultaneous Loading Factors for the Fatigue Design of Bridges (교량 피로설계의 동시재하계수에 관한 연구)

  • Lee, Dong Uk;Seo, Won Chan;Choi, Jae Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.151-165
    • /
    • 2000
  • Since vehicles become large and heavy and traffic volume is increased rapidly, many fatigue damages have been reported in bridge members. In order to prevent fatigue damages of bridge members and maintain safety it is essential to perform rational fatigue check. Only one vehicle is loaded on a bridge deck for the fatigue design. But in reality it is seldom that only one vehicle passes on a bridge deck. Usually more than two vehicles are passing on a bridge deck simultaneously. Therefore, it is necessary to consider the influence of simultaneous loading for a rational fatigue design. In this study, the influence of simultaneous loading is investigated by performing stress variation analysis due to vehicle load on the basis of linear superposition method and Monte-Carlo simulation of traffic flow, and then calculating the measure of fatigue damages.

  • PDF

A method to analyze the strength of bridge in IPM type permanent magnet motor considering the effect of mechanical fatigue characteristic (피로한계를 고려한 IPM타입 영구자석 전동기 Bridge부 구조 해석 방법)

  • Kang, Kyong-Ho;Yu, Suk-Jin;Ahn, Hyo-Chul;Kim, Ji-Hyun;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.999-1000
    • /
    • 2011
  • 영구자석을 삽입하는 IPM(Interior Permanent Magnet : 이하 IPM) 방식의 동기전동기 설계에서 브리지의 형상 결정은 기계적인 안정성을 확보하고 출력 요구사양을 만족시키기 위해 구조해석과 자기회로 해석을 병행하여 검토하는 것을 요구한다. 본 논문에서는 IPM타입 동기전동기를 대상으로 회전자 원심력이 정적상태로 인가되는 정하중 조건과 속도변화가 시간에 따라 변하는 동하중 조건일 경우를 구분하여 설계 여유를 분석하였으며, 영구자석의 접착여부에 따라 브리지에 발생하는 응력 분포의 차이를 해석하였다. 또한, 동하중 상태에서 재료의 응력-피로 특성을 통해 피로 한계 조건을 설계단계에서 예측하였다.

  • PDF

A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade (수평축 풍력발전 시스템용 복합재 회전날개의 피로수명 설계에 관한 연구)

  • 공창덕;방조혁;정종철;강명훈;정석훈;류지윤;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.47-52
    • /
    • 1999
  • Fatigue test is an essential procedure in the dynamic structure design. It is performed to confirm that the structure should safety the required life. In this study, fatigue life for 750㎾ class horizontal axis wind turbine composite blade was investigated. Required fatigue stress was calculated by fan Bond's empirical equation and S-N linear damage method. Fatigue load for FEM analysis was calculated using load spectrum through experiments and Spera's method. Service fatigue stress was obtained by FEM with the calculated fatigue load. From comparison of the fatigue stresses, fatigue life over 20 years was confirmed.

  • PDF

Fabrication of Mechanical fatigue flawed Specimen and Evaluation of Flaw Size (기계적 피로결함 시험편 제조 및 결함 크기 평가)

  • Hong, Jae-Keun;Kim, Woo-Sung;Son, Young-Ho;Park, Ban-Uk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Mechanical or thermal fatigue crack and intergranular stress corrosion cracking could be occured in the in-service nuclear power plant and mechanical fatigue crack was selected to study in this paper. Specimen was designed to produce mechanical fatigue flaw under tensile stress. The number of cycles and the level of stress were controlled to obtain the desired flaw roughness. After the accurate physical measurement of the flaw size and location, fracture surface was seal-welded in place to ensure the designed location and site. The remaining weld groove was then filled by using gas-tungsten are welding(GTAW) and flux-cored arc welding(FCAW). Results of radio graphic and ultrasonic testing showed that fatigue cracks were consistent with the designed size and location in the final specimens.

Prediction of Reliability of Fatigue Limit of S34MnV Steel for Marine Diesel Engine Crank Throw Components (선박용 디젤 엔진 크랭크 스로 부품용 S34MnV강의 피로한도에 대한 신뢰도 예측)

  • Kim, Seon Jin;Kong, Yu Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2016
  • The aim of this study is to estimate the reliability of fatigue limit of the material used for crank throw components according to the staircase method. The material used for crank throw components is forged S34MnV grade steel, which is heat treated by normalizing and tempering. In this work, to predict the reliability of the design fatigue strength, axially loaded constant amplitude fatigue testing was conducted. The test specimens were loaded with an axial push/pull load with a mean stress of 0 MPa, which corresponds to a stress ratio of R=-1. The fatigue test results were evaluated by Dixon-Mood formulas. The values of mean fatigue strength and standard deviation predicted by the staircase method were 296.3 MPa and 10.6 MPa, respectively. Finally, the reliability of the fatigue limit in some selected probability of failure is predicted. The proposed method can be applied for the determination of fatigue strength for design optimization of the forged steel.

고온 피로 파괴

  • 이상록
    • Journal of the KSME
    • /
    • v.28 no.4
    • /
    • pp.349-365
    • /
    • 1988
  • 항공기 엔진, 발전 설비, 원자로 등과 같이 고온에서 작동하는 구조물 및 부품은 피로 파괴, 크립 파괴 또는 복합된 크립-피로(creep fatigue) 파괴에 대비하여 설계될 것이 요구된다. 관련 소 재를 살펴보면 항공기 엔진에 많이 사용되는 nickel-based superalloy로부터, land-based turbine rotor 등에 사용되는 low alloy ferritic steel 등으로 다양하다. 이외에도 austenitic stainless steel(Type 300 series)이 원자로에 많이 쓰이고 있다. 따라서 이러한 여러 가지 재료에 대한 고온 피로와 복합된 크립 파괴에 대하여 많은 연구가 진행되어 왔고, 앞으로도 보다 안전한 설 계를 위하여 계속될 전망이다.

  • PDF

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF

Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor (응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계)

  • Kim, Daehoon;Ahn, Kisoo;Jeong, Seunghwan;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • In this study, a structure satisfying the fatigue constraint is designed by applying the topology optimization based on the phase field design method. In order to predict life based on the stress value, high cycle fatigue failure theory in which stress acts within the range of elastic limit is discussed and three fatigue theories of modified-Goodman, Smith-Watson-Topper and Gerber theory are applied. To calculate the global maximum stress, a modified P-norm stress correction method is used. As a result, it is possible to obtain topology optimization results that minimize the volume while satisfying the fatigue constraints. By applying the phase field design method, a simple shape with a minimized gray scale was obtained, and the maximum stress value acting on the optimization result became very close to the allowable stress value due to the modified P-norm stress method. While previous studies does not consider the stress correction factor, this study proposes the determination method regarding the stress correction factor considering loading effects related to axial stress components.