• Title/Summary/Keyword: 피로균열 전파율

Search Result 24, Processing Time 0.028 seconds

Evaluaton of Fatigue Crack Propagation Rate Using Parameter of Fatigue Strain Intensity Factor (피로변형확대계수 $\Delta$A를 이용한 피로크랙 전파속도 평가)

  • 박영철;오세욱;허정원;권혁동;김영광
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.76-84
    • /
    • 1991
  • 본 연구는 피로수명 평가를 위한 새로운 파괴역학적 parameter의 확립에 관한 연구이다. 실질적으로 피로파괴가 일어나는 피로 균열선단의 국소영역에서 변형분포를 미소원형격자측정법을 이용하여 실험적으로 명확히 밝혀내었다. 그리고 이 결과를 기초로 하여 국소피로 변형율장을 대표할 수 있는 피로변형율 확대계수 $\Delta$A를 제안하였다. 또한 새로운 parameter $\Delta$A의 유효성을 여러 피로조건에서 검토한 결과, 균열선단 국소 영역에서 피로 변형율 확대계수 $\Delta$A에 의하여 피로 균열전파 속도평가를 일의적으로 나타낼 수 있음을 확인하였다.

  • PDF

Influences of Post Weld Heat Treatment on Fatigue Crack Growth Behavior of Transverse TIG Welded Al6013-T4 Aluminum Alloy Joint (횡방향 TIG 용접된 Al6013-T4알루미늄 합금 용접부의 피로균열전파거동에 미치는 PWHT의 영향)

  • Haryadi, Gunawan Dwi;Kim, Seon Jin
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2012
  • 본 연구는 횡방향 TIG 용접된 Al6013-T4 알루미늄 합금 용접부의 피로균열전파거동에 미치는 용접후열처리(PWHT)의 영향을 조사하는 것이 주목적이다. 기초적으로 인장시험, 경도 및 미세조직이 조사되었으며, 피로균열전파거동을 고찰하기 위한 피로 시험은 모두 중앙균열인장(CCT) 시험편에 대하여 수행되었다. T82열처리에 있어서 시효시간은 피로균열전파율, 인장강도 및 경도에 대단히 민감함을 나타내었으며, 모재와 열영향부재의 경우가 용접재보다 기계적 성질이 우수하였다. 횡방향 TIG 용접한 Al6013-T4 시험재의 용접후열처리 조건에 따라서 피로균열전파 저항에는 차이가 나타났으며, 본 실험의 조건하에서 24시간 인공시효 PWHT-82 시험편이 피로균열전파 저항이 가장 우수한 결과를 나타내었다.

Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen) (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 불규칙성 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1109-1116
    • /
    • 2013
  • This study aims to investigate the spatial randomness of fatigue crack growth rate for the friction stir welded (FSWed) 7075-T651 aluminum alloy joints. Our previous fatigue crack growth test data are adopted in this investigation. To clearly understand the spatial randomness of fatigue crack growth rate, fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control testing. The experimental data were analyzed for two different materials-base metal (BM) and weld metal (WM)-to investigate the effects of spatial randomness of fatigue crack growth rate and material properties, the friction stir welded (FSWed) 7075-T651 aluminum alloy joints, namely weld metal (WM) and base metal (BM). The results showed that the variability, as evaluated by Weibull statistical analysis, of the WM is higher than that of the BM.

Experimental Investigation of Fatigue Crack Growth Behavior in Friction Stir Welded 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing (For LT Orientation Specimen) (일정 응력확대계수범위 제어 시험하의 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파 거동의 실험적 고찰 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.775-782
    • /
    • 2013
  • In this study, as a series of studies aimed at investigating the spatial randomness of fatigue crack growth for friction stir welded (FSWed) 7075-T651 aluminum alloy joints, the fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy joints was investigated for LT orientation specimens. Fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control for 5 specimens of the FSWed 7075-T651 aluminum alloy, including base metal (BM), heat affected zone (HAZ), and weld metal (WM) specimens. The mean fatigue crack growth rate of WM specimens was found to be the highest, whereas that of HAZ and WM specimens was the lowest. Furthermore, the variability of fatigue crack growth rate was found to be the highest in WM specimens and lowest in BM specimens.

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

Microcrack Development in the Pocheon Granite due to Cyclic Loading (피로하중에 의한 포천화강암의 미세균열 발달특성)

  • 장보안;김영화;김재동;이찬구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Deformation behavior and microcrack development due to uniaxial compressive cyclic loading in the Pocheon granite were investigated using the ultrasonic velocity measurements and the differential strain analysis(DSA). Most microcracks were developed along the direction parallel to the loading axis. Microcracks developed at the early stage of cyclic loading were formed by propagation of pre-existing cracks. Ultrasonic velocity measurement, DSA and measurement of permanent deformation are good tools to represent microcrack development in rock. Since results from each method are slightly different, microcrack development should be interpreted from all three methods. The magnitude of microcracks developed at the early stage of cyclic loading under 80% loading level is twice compared with those under 70% loading level. The highest volumetric crack strain is about 3000, indicating that the Pocheon granite will fail with 0.3% occupation of microcrack in volume.

  • PDF

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

A Study On the Factors that Affect Fatigue Crack Growth Rate in Steels - Specimen Thickness Effect - (강재의 피로균열전파율에 미치는 영향인자에 관한 연구)

  • Kim, Seon-Jin;Nam, Ki-Woo;Hong, Jin-Pyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.58-65
    • /
    • 1999
  • The effect of specimen thickness on fatigue crack growth rate was studied. The objective of the present study is to investigate the effect of specimen thickness on the fatigue crack growth behavior at various stress intensity factor ranges and also the variation of material restance to fatigue crack growth. The fatigue crack growth resistance was treated as a spatial stochastic process, which varies randomly on the crack path, Compact tension specimens with a LT orientation for structural steel were used. All testing was done at a constant stress intensity level. The experimental data were analyzed for the size effect to determine the Weibull distributions of the material resistance.

  • PDF