• Title/Summary/Keyword: 피로균열 발생수명

Search Result 140, Processing Time 0.02 seconds

특집: 미래주도형 성형공정과 수치 해석기술 - 응력 해석 기법을 이용한 주조 공정에서 발생하는 변형 및 균열 예측

  • Chu, In-Ho
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.114-123
    • /
    • 2011
  • 주조품 설계 및 제조에 있어서 기존의 유동 및 응고 해석뿐 아니라 최근에는 응력 해석 기법의 적용이 대두 되고 있다. 특히 자동차 산업에 있어서 부품의 경량화는 필수 불가결한 선택이며, 이는 설계자 및 제조업체에 복잡하고 얇은 알루미늄, 마그네슘 주물품에 대하여, 치수적인 문제와 강성의 문제를 동시에 해결하도록 요구하고 있다. 또한 경제적인 관점에서 긴 금형 수명이 요구되나 열 및 기계적인 피로 균열인 'heat checking'은 이러한 금형 수명을 저하시키는 가장 흔한 요소이다. 이런 무제를 해결하기 위해 해석 기법을 이용하여 주조 설계 및 공정을 최적화 함으로써 변형의 최소화 및 금형 수명의 최대화를 달성할 수 있을 것으로 판단된다. 이러한 기법을 성공적으로 적용하기 위해서는 주조 공정 해석, 재료 시험, 제품 설계 및 공정 최적화 설계가 통합적으로 이루어져야 한다. 본 고에서는 현재 최신 주조 해석 기법을 이용하여, 주조품 제조 공정에서 발생하는 응력과 관련된 문제들에 대한 수치해석 기법을 살펴보고, 이에 대한 리뷰를 제공하고자 한다.

  • PDF

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

Fatigue Test and Evaluation of Landing Gear (착륙장치 피로 시험평가)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1181-1187
    • /
    • 2012
  • For the fatigue design of aircraft landing gear, the safe-life approach is applied. Structural defects such as cracks or detrimental deformations should not occur under the fatigue load spectrum depicting the entire lifetime usage of the aircraft. In the design phase, the fatigue life of the landing gear is estimated analytically by adopting the stress-based approach because the fatigue of aircraft landing gear is generally high-cycle fatigue. This utilizes S-N curves that are factored to produce design curves that account for the scatter and surface finish of the material. In the test and evaluation phases, a fatigue test should be conducted for full-scale landing gear to substantiate the fatigue design requirement in the end. In this study, the procedure for the fatigue test and evaluation of aircraft landing gear is presented with real application cases.

Fatigue Life and Stress Spectrum of Wing Structure of Aircraft (항공기 주익 구조물의 응력스펙트럼 및 피로수명 추정에 관한 연구)

  • Kang, Ki-Weon;Koh, Seung-Ki;Choi, Dong-Soo;Kim, Tae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1185-1191
    • /
    • 2010
  • Aged aircraft have several cracks as a results of long-term service, and these cracks affect the safety and decrease the rate of operation of the aircraft. To solve these problems, crack propagation analysis should be performed to determine the service life at fatigue critical location(FCL). It is, however, almost impossible to obtain the stress spectrum, which is crucial for crack propagation analysis of the FCLs of wing structure of aged aircraft. In this study, to analyze the fatigue crack propagation behavior at the FCL of an aged aircraft, first finite element analysis is performed for a 3D geometry model of the aircraft wing structure, which is obtained using CATIA based on the paper drawings. Then, the transfer function and stress-spectrum of the FCL are derived using the load factor data and the FEA results. Finally, the crack propagation rates of the FCL are evaluated using the commercial software, NASGRO 6.0.

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

Shape-Simplification Analysis Model for Fatigue Life Prediction of Casting Products Considering Internal Defects (내부 결함을 고려한 주조 제품의 피로수명 예측을 위한 결함 형상단순화 해석모델)

  • Kwak, Si-Young;Kim, Hak-Ku
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1243-1248
    • /
    • 2011
  • Internal defects are a major concern in the casting process because they have a significant influence on the strength and fatigue life of casting products. In general, they cause stress concentration and can be a starting point of cracks. Therefore, it is important to understand the effects of internal defects on mechanical properties such as fatigue life. In this study, fatigue experiments on tensile specimens with internal defects were performed. The internal defects in the casting product were scanned by an industrial CT scanner, and its shape was simplified by ellipsoidal primitives for the structural and fatigue analysis. The analysis results were compared with experimental results for casting products with internal defects. It was demonstrated that it is possible to consider internal defects of casting products in stress and fatigue analysis. The proposed method provides a tool for the prediction of the fatigue life of casting products and the investigation of the effects of internal defects on mechanical performance.

Reheat Cracking Susceptibility of CrMoV Steel (CrMoV강의 재열균열 민감도에 관한 연구)

  • 김광수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.168-170
    • /
    • 2004
  • 터빈로터는 발전설비 중에서 가장 핵심 부분이며 동시에 심한 고온 응력을 받는 부분이다. 터빈로터 재료로는 Ni-Cr-Mo-V강과 CrMoV 강등이 사용된다. CrMoV 강은 발전 설비로 장시간 사용 중 열적피로나 크립손상, 고온 부식 등의 문제가 단독 혹은 복합적으로 발생하여 재료에 손상을 입히게 되고 결국에는 설비의 수명을 단축 시키곤 한다. (중략)

  • PDF

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Environmentally-Assisted Cracking of Austenitic Alloys in a PWR Environment (PWR 환경에서의 오스테나이트계 합금의 환경조장균열)

  • Hong, Jong-Dae;Jang, Hun;Jang, Changheui
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • Austenitic stainless steels and Ni-base alloys are widely used as structural materials for major components and piping system in pressurized water reactors (PWRs). These austenitic alloys are known to be susceptible to environmental assisted cracking (EAC), such as environmentally-assisted fatigue (EAF) and primary water stress corrosion cracking (PWSCC) during long-term exposure to PWR primary water environment. In this paper, the current understanding on the phenomena and mechanisms of these EAC are briefly introduced using experimental results and literature review. The mechanisms for EAF and PWSCC for austenitic stainless steels and Ni-base alloys are discussed. Currently, austenitic stainless steels are known to be more susceptible to EAF, while less susceptible to PWSCC than Ni-base alloys. The possible explanations to such behaviors are proposed and discussed in view of the role of hydrogen and internal oxidation.

Damage Tolerance Design and Prediction of Fatigue Life in Aircraft Structure (항공기구조의 손상허용설계와 피로수명 예측)

  • 황돈영
    • Journal of the KSME
    • /
    • v.35 no.6
    • /
    • pp.468-480
    • /
    • 1995
  • 항공기구조는 항상 피로하중에 노출되어 있고 조류충돌과 같은 불시의 상황에 의해 손상을 입을 가능성을 가지고 있어서 이에 대한 대비책을 마련하지 않으면 인명과 재산상에 막대한 손실을 초래할 가능성이 있다. 따라서 항공기가 개발되는 초기의 설계단계부터 항공기의 안전성확보가 중요하며, 이를 위해서는 적절한 피로수명예측과 손상허용설계를 해나아가는 것이 중요하며, 그 내용을 정리하면 다음과 같다. (1) 항상 손상의 가능성을 인정하고, 이 손상이 존재하는 경우에도 항공기의 안전이 보장 되도록 설계한다. (2) 손상이 발생하면 쉽게 발견되도록 설계한다. (3) 한 부재의 손상이 전 구조물의 파괴로 이루어지지 않도록 다중하중 경로로 설계한다. (4) 손상의 가능성이 있는 부품은 특별관리한다. (5) 안전균열성장 및 잔류강도 요구조건이 충족되도록 검사계획을 수립하며, 이 검사계획에 따라 검사를 수행한다.

  • PDF