• Title/Summary/Keyword: 피로균열전파수명

Search Result 66, Processing Time 0.022 seconds

The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section (축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동)

  • Song, Sam-Hong;An, Il-Hyeok;Lee, Jeong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

A Study on the Fatigue Behaviors of Cr-Mo-V Alloy for Steam Turbine at High Temperature Difference (터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동에 관한 연구)

  • Song, Sam-Hong;Kang, Myung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.173-179
    • /
    • 1997
  • The high temperature fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely used as thermal power plant turbine materials for examination fatigue behavior of materials in power plants which have been operated for long periods. The fatigue tests at high temperature were performed at the various temperature and applied stress. The results obtained are summarized as follows : The fatigue crack length increases and the fatigue life decreases with temperature and applied stress according to the same number of stress cycle. The fatigue crack propagation and the fatigue life were much influenced by temperature and applied stress.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Life Prediction of Fatigue Crack Propagation and Nondestructive Evaluation in 5083 Aluminum Alloy (알루미늄 5083의 피로균열 진전에 따른 수명예측 및 비파괴평가)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.94-98
    • /
    • 2001
  • fatigue life and nondestructive evaluation were examined experimentally using surface crack specimen and compact tension specimen of 5083 aluminium alloy. Acoustic emission signals emanated during failure of aluminum alloys has been the subject of numerous investigations. Possible sources of AE during deformation have been suggested as the dislocations, fracture of brittle particles and debonding of these particles from the alloy matrix. Fatigue life and penetration behavior of long surface crack can be evaluated quantitatively using K values proposed by authors. The influence of stress ratio on the frequency characteristics of AE signals were investigated.

  • PDF

An Experimental Study on the Factors that Affect Fatigue Crack Growth Retardation Behavior in S45C Steel (S45C 강의 피로균열전파 지연거동의 영향인자에 관한 실험적 연구)

  • Kim, Seon-Jin;An, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.470-477
    • /
    • 2001
  • Constant ΔK fatigue crack growth tests were performed by applying an intermediate multiple overload for S45C steel. The purpose of the present study is to investigate effects of specimen thickness at various baseline stress intensity factor range levels (ΔK(sub)b), overload application position (a/W) and overload application frequency (OL(sub)HZ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK(sub)b level is increased with increasing the baseline stress intensity factor range level for all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing a/W and increased with OL(sub)HZ.

An Experimental Study on the Factors that Affect Fatigue Crack Growth Retardation Behavior in SM45C Steel (SM45C 강의 피로균열전파 지연거동에 미치는 영향인자에 관한 실험적 연구)

  • Kim, Seon-Jin;Kim, Jong-Hoon;Ahn, Seok-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.55-60
    • /
    • 2000
  • Constant ${\Delta}K$ fatigue crack growth tests were performed applying an intermediate multiple overload for SM45C steel. The purpose of the present study is to investigate the effects of specimen thickness at various baseline stress intensity levels$({\Delta}K_b)$, overload application frequency(a/W) and overload application frequency$(OL_{HZ})$ on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ${\Delta}K_b$ level is increased with increasing the baseline stress intensity level in all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ${\Delta}K=45MPa \sqrt m$. The retardation cycle is decreased with increasing the overload application position and increased with the overload application frequency.

  • PDF

Fatigue Crack Growth Retardation after Single Overload Cycle in High Strengh Aluminium Weldments (고강도 알루미늄 합금 용접부에 있어서의 피로균열전파에 미치는 과하중 효과)

  • 이택순;김상태;김인식
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 1988
  • Retardation or delay in fatigue crack growth due to overloads are important for the accurate prediction of fatigue lives of structural materials. In this study, retardation of fatigue crack growth in Al 6061-T6 weldments and heat affected zones (HAZ) after single overload cycle had been investigated. Retardation in both weldments and HAZ was observed. It was concluded that retardation in both weldment and HAZ was greater than in base metal due to microstructural change and crack branching and crack closure were major governing factor in retardation.

  • PDF

Fatigue Crack Behavior of Triple Piece Spot by Crack Tip Opening Angle of Welded Specimen (3중 점용접재의 귤열단 열림각(CTOA)을 이용한 피로균열거동)

  • Song, Sam-Hong;Joo, Dong-Ho;Yang, Yun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, internal fatigue crack initiation and propagation behavior were investigated by triple piece spot welded specimen. To estimate fatigue life of the specimen varied with shape and thickness, Crack tip opening angle(CTOA) correlated with stress intensity factor was used as the stiffness parameter. The relation between fatigue life and CTOA can be arranged by the quantitative equation for each specimen by experiment. In addition, the variation of stress distribution was solved and the effect on fatigue crack behavior was examined by finite element method(FEM).

  • PDF

The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio (응력비 변화에 따른 혼합모드 피로균열 전파거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

Fatigue crack propagation of buried pipe steel under mixed model loading (혼합모드하중을 받는 매석배관강의 피로균열전파 거동)

  • 이억섭;최용길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.473-476
    • /
    • 2000
  • Recently, many studies focus on mixed-mode fatigue-fracture characteristics of characteristics of materials. In order to reveal crack initiation and propagation mechanisms in combined -mode fatigue. This paper investigates the initiation and propagation behavior of the fatigue crack of the STS304 specimens under mixed mode loading conditions. moreover crack arrest and branch phenomena were analyzed with respect to the change do the angle of inclined loading. The relationship between the angle of inclined loading and the angle of branched crack was studied. A greate number of cycles are necessary to initiate a new crack from the initial crack. The direction of the new crack propagation is determined by MTS theory.

  • PDF