• Title/Summary/Keyword: 피로균열성장

Search Result 350, Processing Time 0.027 seconds

A Study on Growth Behavior of Small Fatigue Crack in 304 Stainless Steel at Elevated Temperatures (고온하 304 스테인레스강의 작은 표면구열의 성장거동에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 1990
  • Rotating bending fatigue tests of an authentic steel 304 were performed at various temperatures such as room temperature, $538^{\circ}$ and $593^{\circ}C$. The plastic replica method was also applied in order to estimate the fatigue life on the basis of serial observation of small fatigue crack initiation and growth on the pit specimen surface. The fatigue crack growth behavior of 304 stainless steel was investigated within the frame work of elastic-plastic fracture mechanics within a narrow scatterband in spite of different stress levels at elevated temperature as at room temperature. The growth law of small surface crack is determined uniquely by the term. $\DELTA\sigma^{n}a$ where $\DELTA\sigma$ is the stress amplitude, a is the crack length, and n is a constant. It is found that the small crack growth behavior is basically equivalent to the S-$N_{f}$ relationship, where S and $N_{f}$ are stress and number of cycles to failure, and the fatigue life prediction is in good agreement with the experimental results.

Type 347 stainless steel 피로시험 데이터의 통계처리

  • Min, Gi-Deuk;Kim, Seon-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.35.2-35.2
    • /
    • 2009
  • 최근 전세계적으로 저탄소, 녹색성장으로 인하여 원자력발전이 주목받고 있다. 또한 에너지의 고효율로 인한 발전소의 설비가 대형화가 됨에 따라 발전소의 수명평가와 건전성평가가 중요해지고 있다. 일반적으로 구조물 내에 존재하는 균열의 크기와 형상을 파악하여 피로균열전파속도를 평가함으로써 건전성평가를 확인하고 있다. 그리고 고온, 고압에서의 피로균열전파속도는직류전위차 (Direct Current Potential Drop : DCPD)법을 사용하고 있다. DCPD법은 균열의 정밀한 측정방법으로써 측정시 오차가 발생하기 때문에 ASTM에서 제시된 incremental polynomial 법을 권고하고 있다. 따라서 본 연구에서는 피로균열전파전파속도의통계적처리를 통해서 합리적인 곡선을 구하여 건전성평가에 활용하고자 한다. 실험에 사용된 시편은 두께 5mm, 폭 25.4mm CT시편을 사용하였으며, 1mm의 예비균열을 주었다. 그리고 실험온도는 상온에서 실시 하였으며, 주파수는 10Hz를 주었다. 그리고 DCPD 측정을 위해 5A의 전류를 주었으며, 이때 측정된 전압값을 ASTM에 제시된 관계식에넣어 균열길이로 환산하였으며, 데이터처리는 ASTM에 제시된 incremental polynomial법을 기본적으로 사용하였다. 또한 ASTM에 제시된 2n+1을 이용하여 데이터의 수 n을 1~7 까지 변화를 주어 3~15 point 까지 데이터를 처리하여곡선을 제시하였다. 분석결과 $R^2$값이 1을 기준으로 했을 때 3~7 point 까지는큰 차이를 보이지 않았지만 9-point 이후부터는 $R^2$ 감소함을 알 수 있었다. 또한 적용된 데이터의수에 따라 피로군열전파속도 곡선에서 측정된 Paris law의 n값과 C 값은 큰차이를 보이지 않았다.

  • PDF

Fatigue Crack Growth, Coalescence Behavior and Its Simulation on Multi-Surface Cracks (복수 표면피로균열의 성장합체거동과 시뮬레이션에 관한 연구)

  • 서창민;황남성;박명규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.716-728
    • /
    • 1994
  • In this paper, fatigue tests were carried out to study the behavior of growth and coalescence of multi-surface cracks which were initiated at the semi-circular surface notches, and a simulation program was developed to predict their growth and coalescence behavior. By comparing the experimental result with those of the simulation based on SPC(surface point connection), ASME and BSI(British Standards Institution) conditions, we tried to enhance the reliance and integrity of structures. This shows that the simulation result has utility for fatigue life prediction.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF

The Fatigue Life and Crack Penetration Behavior of High-Strength Steel (고장력강의 피로수명과 균열관톤 거동에 관한 연구)

  • 남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1990-2001
    • /
    • 1991
  • The fatigue life and crack penetration behavior of high strength steel have been studied in detail both experimentally and analytically. The fatigue crack shape of a smooth specimen is almost semicircular, while a specimen with stress concentration becomes semielliptical according to stress concentration shape. The aspect ratio of smooth specimens calculated using the Newman-Raju's formular is smaller than the value obtained from the experiment. On the other hand, the aspect ratio of the stress concentration specimen shows a good agreement with experimental results. It is found that the crack growth behavior on the back surface after the penetration is unique and can be divided into three stages ; rapid growth region, constant growth region and acceleration growth region. By using the K value suggested in this study, the particular crack growth behavior and crack shape can be estimated quantitatively.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction (크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구)

  • Joo, Won-Sik;Cho, Seok-Swoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel (SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF