• Title/Summary/Keyword: 피드 포워드 신경망

Search Result 13, Processing Time 0.028 seconds

Mortality Prediction of Older Adults Using Random Forest and Deep Learning (랜덤 포레스트와 딥러닝을 이용한 노인환자의 사망률 예측)

  • Park, Junhyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.309-316
    • /
    • 2020
  • We predict the mortality of the elderly patients visiting the emergency department who are over 65 years old using Feed Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) respectively. Medical data consist of 99 features including basic information such as sex, age, temperature, and heart rate as well as past history, various blood tests and culture tests, and etc. Among these, we used random forest to select features by measuring the importance of features in the prediction of mortality. As a result, using the top 80 features with high importance is best in the mortality prediction. The performance of the FFNN and CNN is compared by using the selected features for training each neural network. To train CNN with images, we convert medical data to fixed size images. We acquire better results with CNN than with FFNN. With CNN for mortality prediction, F1 score and the AUC for test data are 56.9 and 92.1 respectively.

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1122-1127
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF

An Implementation of an Intelligent Access Point System Based on a Feed Forward Neural Network for Internet of Things (사물인터넷을 위한 신경망 기반의 지능형 액세스 포인트 시스템의 구현)

  • Lee, Youngchan;Lee, SoYeon;Kim, Dae-Young
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.95-104
    • /
    • 2019
  • Various kinds of devices are used for the Internet of Things (IoT) service, and IoT devices mainly use communication technology that uses the frequency of the unlicensed band. There are several types of communication technology in the unlicensed band, but WiFi is most commonly used. Devices used for IoT services vary in computing resources from devices with limited capabilities to smartphones and provide services over wireless networks such as WiFi. Most IoT devices can't perform complex operations for network control, thus they choose a WiFi access point (AP) based on signal strength. This causes a decrease in IoT service efficiency. In this paper, an intelligent AP system that can efficiently control the WiFi connection of the IoT devices is implemented. Based on the network information measured by the IoT device, the access point learns using a feed forward neural network algorithm, and predicts a network connection state to control the WiFi connection. By controlling the WiFi connection at the AP, the service efficiency of the IoT device can be improved.

Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor by Neural Network Control (신경망 제어에 의한 철심형 리니어모터의 추종성 향상 연구)

  • 송창규;김경호;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.73-77
    • /
    • 2002
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted far a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects tracking accuracy of the carrage and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method and neural network control. Experiments carried 7ut on the linear motor test setup show that this control methods is usable in order to reduce the motor ripple.

  • PDF

Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system (Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교)

  • Hong, Junyoung;Kwon, Chulhong
    • Phonetics and Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, we construct a Korean text-to-speech system using the Merlin toolkit which is an open source system for speech synthesis. In the text-to-speech system, the HMM-based statistical parametric speech synthesis method is widely used, but it is known that the quality of synthesized speech is degraded due to limitations of the acoustic modeling scheme that includes context factors. In this paper, we propose an acoustic modeling architecture that uses deep neural network technique, which shows excellent performance in various fields. Fully connected deep feedforward neural network (DNN), recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), bidirectional LSTM (BLSTM) are included in the architecture. Experimental results have shown that the performance is improved by including sequence modeling in the architecture, and the architecture with LSTM or BLSTM shows the best performance. It has been also found that inclusion of delta and delta-delta components in the acoustic feature parameters is advantageous for performance improvement.

Classification of Schizophrenia Using an ANN and Wavelet Coefficients of Multichannel EEG (다채널 뇌파의 웨이블릿 계수와 신경망을 이용한 정신분열증의 판별)

  • 정주영;박일용;강병조;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, a method of discriminating EEG for diagnoses of mental activity is proposed. The proposed method for classification of schizophrenia and normal EEG is based on the wavelet transform and the artificial neural network. The wavelet coefficients of $\alpha$ band, $\beta$ band, $\theta$ band, and $\delta$ band are obtained using the wavelet transform. The magnitude, mean, and variance of wavelet coefficients for each EEG band are applied to the input data of the system's ANN. The architecture of the ANN s a four layered feedforward network with two hidden layer which implements the error back propagation learning algorithm. Through the classification of schizophrenia composed of 19 ANNs corresponding to 19 channels, the classifying system show that it can classify the 100% of the normal EEG group and the 86.67% of the schizophrenia EEG group.

Improving the speed of deep neural networks using the multi-core and single instruction multiple data technology (다중 코어 및 single instruction multiple data 기술을 이용한 심층 신경망 속도 향상)

  • Chung, Ik Joo;Kim, Seung Hi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.425-435
    • /
    • 2017
  • In this paper, we propose optimization methods for speeding the feedforward network of deep neural networks using NEON SIMD (Single Instruction Multiple Data) parallel instructions and multi-core parallelization on the multi-core ARM processor. As the result of the optimization using SIMD parallel instructions, we present the amount of speed improvement and arithmetic precision stage by stage. Through the optimization using SIMD parallel instructions on the single core, we obtain $2.6{\times}$ speedup over the baseline implementation using C compiler. Furthermore, by parallelizing the single core implementation on the multi-core, we obtain $5.7{\times}{\sim}7.7{\times}$ speedup. The results we obtain show the possibility for applying the arithmetic-intensive deep neural network technology to applications on mobile devices.

EEG Analysis and Classification System (EEG 분석과 분류시스템)

  • jung Dae-Young;Kim Min-Soo;Seo Hee-Don
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2004
  • Recently, wavelet transform have been applied to various kinds of problems in many fields. In this paper, we propose method of Daubechies wavelet to detect several kinds of important characteristic waves in tasks EEG that are needed to diagnose EEG. We show that our system could be attained higher performance in detecting characteristic waves than the other methods. In this system, the architecture of the neural network is a three layered feed-forward networks with one hidden layer which implements the error back propagation teaming algorithm. Applying the algorithms to 4 subjects show 92% classification rates. The proposed system shows a little more accurate diagnosis for task EEG by Wavelet and neural network. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and quantitative diagnosis of task EEG.

  • PDF

EEG Analysis for Cognitive Mental Tasks Decision (인지적 정신과제 판정을 위한 EEG해석)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.289-297
    • /
    • 2003
  • In this paper, we propose accurate classification method of an EEG signals during a mental tasks. In the experimental task, subjects achieved through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and select a key. To recognize the subjects' selection time, we analyzed with 4 types feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, $\theta$, $\gamma$ waves. From the analysed features, we construct specific rules for each subject meta rules including common factors in all subjects. In this system, the architecture of the neural network is a three layered feedforward networks with one hidden layer which implements the error back propagation learning algorithm. Applying the algorithms to 4 subjects show 87% classification success rates. In this paper, the proposed detection method can be a basic technology for brain-computer-interface by combining with discrimination methods.