게임을 실제 이용하는 게임 플레이어와 게임을 이용한다는 의미에서의 게임 플레이는 그 동안 컴퓨터 게임을 개발하는 과정에서 중요하게 고려되어온 컴퓨터 게임의 요소들이다. 하지만 현재 게임 플레이어와 게임 플레이에 대한 학문적 의미와 게임 시스템 구축을 위한 개념 모델은 어떻게 되는가를 질문 했을 때, 많은 사람들이 다양한 관점에서 대답을 하고 있다. 따라서 본 논문에서는 기존의 게임 플레이어와 게임 플레이에 대한 개념들을 학문적으로 재조명하고, 컴퓨터 게임 시스템 구현에서 참조할 수 있는 개념 모델을 제안하였다. 먼저 본 논문에서는 게임 플레이어란 게임 시스템이 제공하는 각 종 정보를 처리하는 정보 시스템 관점에서 재해석할 수 있으며, 따라서 정보처리시스템에서 제안한 지각시스템, 인지시스템, 운동시스템을 바탕으로 게임 플레이어에 대한 개념 모델을 제안하였다. 한편 게임 플레이에 대해서는 상호작용과 문제해결과정이라는 이론을 바탕으로 게임 플레이에 대한 학문적 의미를 재조명하였고, 이를 바탕으로 개념 모델을 제안하였다. 본 논문의 결과는 차후에 진행될 컴퓨터 게임에 대한 학문적 연구의 기본 개념을 제공해 줄 수 있을 것이다.
In online games, interactions with other players may threaten player satisfaction. Therefore, matching players of similar skill levels is important for players' experience. However, with the current evaluation method which is only based on the final result of the game, newbies and returning players are difficult to be matched properly. In this study, we propose a method to improve matchmaking quality. We build machine learning models to predict the MMR of players and derive the basis of the prediction. The error of the best model was 40.4% of the average MMR range, confirming that the proposed method can immediately place players in a league close to their current skill level. In addition, the basis of predictions may help players to accept the result.
As the industry develops, the technology used for games is also being advanced. In particular, AI technology is used to game automation and intelligence. These game player patterns are widely used in online games such as player matchmaking, generation of friendly or hostile NPCs, and balancing of game worlds. This study proposes a model generation method for game players. For model generation, attributes such as hunting, collection, movement, combat, crisis management, production, and interaction were defined, and patterns were extracted and modeled using decision tree method. To evaluate the proposed method, we used the game log of a commercial game and confirmed the meaningful results.
The purpose of this study is to identify online-game players' desire in cheating programs through Rene Girard's theory of mimetic desire. Cheating programs disrupts the magic circle of the game with denying the lusory attitude that players should have. The cheating players' desires do not go directly to victory, but are mediated by a virtual 'model player' which the rules of the game imply. They are internally mediated, so there is constant conflict in the play. Cheating players' desire to enhance skills by technology is defined as a false desire for transhuman.
This Study analyzes gameness in SNS. SNS is not only communication tool for real life but also game like media for the experimental fiction. As the media like games, SNS meets 6 classic game features. After the Tatradic analysis, Expressive and manipulation rules move SNS paidia direction, player's effort and negotiable outcome are obsolesced. Player's attachment is enhanced and in SNS, the tradition of MUD retrieves abstract ground with representative expression. As following result, SNS is able to extend its own area to the player's creative world for the possible. SNS is the media like games.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.317-321
/
2006
게임의 재미요소를 증대 시키고, 게임 생명주기(Life-Cycle)를 늘어나게 하기 위해 다양한 방법이 연구 중이다. 현실감 있는 그래픽 효과와 뛰어난 음향 효과 등과 함께 게임 플레이어의 게임 스타일이 반영된 게임을 만들기 위한 방법이 대표적이 예라 할 수 있다. 그 중 게임 플레이어의 스타일을 게임에 다시 이용하기 위해서는 플레이어의 인지과정이 요구되며, 인지된 결과를 이용하여 플레이어를 모델링(User Modeling)한다. 하지만, 게임의 종류와 특성에 따라 다양한 게임이 존재하기 때문에 플레이어를 모델링하기 어렵다는 문제를 가지고 있다. 본 논문에서는 게임에서 정의된 FSM(Finite State machine)을 이용하여 플레이어가 선택한 행동 패턴을 분석하고 적용하는 방법과 다양한 게임에서 이용 할 수 있는 스크립트 형태의 NPC 행동 패턴 변경 방법을 제안한다. 플레이어의 데이터를 분석하여 얻은 결과는 FSM을 변경하여 새로운 행동을 보이는 NPC(Non-Player Characters)를 생성하는데 사용되며, 이 캐릭터는 게임의 특성과 플레이어의 최신 행동 패턴 경향을 학습한 적용형 NPC라 할 수 있다. 실험을 통하여 사용자의 행동과 유사한 패턴을 보이는 NPC의 생성을 확인할 수 있었으며, 게임에서 상대적인 또는 적대적인 캐릭터로 유용하게 사용 될 수 있다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.4
/
pp.135-143
/
2015
A Multiplayer Online Game(MOG) is a game capable of supporting hundreds or thousands of players and is mostly played using the Internet. P2P(peer-to-peer) architectures for MOGs can potentially achieve high scalability, low cost, and good performance. The basic idea of many P2P-based games is to distribute the game state among peers and along with it processing, network, and storage tasks. In a primary-copy based replication scheme where any update to the object has to be first performed on the primary copy, this means distributing primary copies of objects among peers. Most multiplayer games use a primary-copy model in order to provide strong consistency control over an object. Games consist of various types of actions that have different levels of sensitivity and can be categorized according to their consistency requirements. With the appropriate consistency level of each action type within a game, this paper allows developers to choose the right trade-off between performance and consistency. The performance for P2P game architecture with the primary-copy model is evaluated through simulation experiments and analysis.
KIPS Transactions on Software and Data Engineering
/
v.9
no.2
/
pp.61-68
/
2020
E-sports has grown steadily in recent years and has become a popular sport in the world. In this paper, we propose a win-loss prediction model of League of Legends at the start of the game. In League of Legends, the combination of a champion statistics of the team that is made through each player's selection affects the win-loss of the game. The proposed model is a deep learning model based on Bidirectional LSTM embedding which considers a combination of champion statistics for each team without any domain knowledge. Compared with other prediction models, the highest prediction accuracy of 58.07% was evaluated in the proposed model considering a combination of champion statistics for each team.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.157-163
/
2022
As the online game market grows, the use of game bots is causing the most serious problem for game services. We propose a harvest coordinate analysis model to detect harvesting bots among game bots of the Massively Multiplayer Online Role-Playing Games(MMORPGs) genre. The proposed model analyzes the player's harvesting behavior using the coordinate data. Game bots can obtain in-game goods and items more easily than normal players and are not affected by realistic restrictions such as sleep time and character manipulation fatigue. As a result, there is a difference in harvesting coordinates between normal players and game bots. We divided the coordinate zones and used these coordinate zone differences to distinguish between game bot players and normal players. We created a dataset with NCSoft's AION log and applied it to a random forest model to detect game bots, and as a result, we derived performance with a recall of 0.72 and a precision of 0.92.
Kim, Dohyung;Oh, Hyunshik;Park, Juhye;Park, Samjoon
KIISE Transactions on Computing Practices
/
v.21
no.7
/
pp.488-493
/
2015
An AddSIM(Adaptive distributed and parallel Simulation environment for Interoperable and reusable Models) is an integrated engagement simulation environment with high-resolution weapon system models for estimation and analysis of their performance and effectiveness. AddSIM can simultaneously handle the continuous dynamical system models based on continuous time, and command, control(C2) and network system models based on a discrete event. To accommodate legacies based on DEVS(Discrete Event System Specification) modeling, DEVS legacies must first be converted into AddSIM models. This paper describes how to implement DEVS models on AddSIM. In this study a method of mapping from hierarchical DEVS models to AddSIM players was developed: The hierarchical DEVS model should be flattened into a one layered model and four DEVS functions of the model, external transition, internal transition, output and time advance, should be mapped into functions of the AddSIM player.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.