• Title/Summary/Keyword: 플랜트

Search Result 3,303, Processing Time 0.03 seconds

Evaluation of Performance of Grouts and Pipe Sections for Closed-loop Vertical Ground Heat Exchanger by In-situ Thermal Response Test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기용 그라우트와 열교환 파이프 단면의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Min, Sun-Hong;Choi, Hang-Seok;Sohn, Byong-Hu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.93-106
    • /
    • 2010
  • In performing a series of in-situ thermal response tests, the effective thermal conductivities of six vertical closed-loop ground heat exchangers were experimentally evaluated and compared one another, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than bentonite grouting, and the efficiency of graphite better performs than silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance. Based on the results from the in-situ thermal response tests, a series of economic analyses have been made to show the applicability of the new addictives and 3 pipe-type heat exchanger.

A Multi-Criteria Spatial Decision Support System for Smart Hydrogen Energy Plant Location Planning in the Gangwon-Do Region, South Korea (강원도 지역 스마트 수소에너지 플랜트 입지계획을 위한 다기준 공간의사결정 지원 시스템 연구)

  • Yum, Sang-Guk;Adhikari, Manik Das
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.381-395
    • /
    • 2023
  • This paper presents a GIS-based site suitability analysis for a smart hydrogen energy plant in the Gangwon-Do region, South Korea. A GIS-based multi-criteria decision analysis (MCDA) was implemented in this study to identify the most suitable sites for the development of smart hydrogen energy plants. The study utilizes various spatial data layers, including hydrogen generation potential and climatic conditions, environmental and topographic conditions, and natural catastrophic conditions, to evaluate the suitability of potential sites for the hydrogen energy plant. The spatial data layers were then used to rank and prioritize the sites based on suitability. The findings revealed that 4.26% of the study area, or 712.14 km2, was suitable for constructing smart hydrogen energy plants. Some regions of Cheorwon-gun, Chuncheon-si, Wonju-si, Yanggu-gun, Gangneung-si, Hoengseong-gun, and near the coastal region along the east coast were found to be suitable for solar and wind energy utilization. The proposed MCDA provides a valuable tool for decision-makers and stakeholders to make informed decisions on the location of smart hydrogen energy plants and supports the transition to a sustainable and low-carbon energy system. Decision-makers can use the results of this study to select suitable sites for constructing smart hydrogen energy plants.

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.

Analyzing Site Reliability for Residential, Civil and Plant Projects using Lean Construction Principles (린 건설에 기초한 국내 건설 공사의 시공 계획 신뢰도 평가 및 분석)

  • Koo, Bonsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.655-664
    • /
    • 2008
  • Lean Construction recommends implementing site production management by measuring the reliability of daily production tasks, collecting the causes for failure of incomplete tasks, and identifying problems in the existing process based on the collected data. Although many research projects have been performed to introduce Lean Construction in Korea, there are not many cases in which day-to-day site production operations has been stringently evaluated based on such methods. This paper introduces three cases in which such techniques were implemented on a residential, civil infrastructure and plant project. On each project, process maps were created with the superintendents and daily production meetings were held for two weeks. Consequently, the average PPC for the three projects was 79% for PPC and 16% for PAT. In addition, the majority of the failures were due to 'Directive/Plan' and 'Prerequisites.' The results show that project stakeholders (owners, contractors, etc.) lack the ability to plan ahead and keep to their plans, and also lack the capability to synchronize workflow between themselves. The results also reveal that project participants need to be more proactive in solving process problems on site and also need to be better educated in Lean concepts and methodologies.

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (선박조종 시뮬레이터를 이용한 연안 해역 디지털 트윈 구축에 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Kyunghun Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.200-201
    • /
    • 2023
  • Digital twin technology is used in various fields as a method of creating a virtual world to minimize the cost of solving problems in the real world, and is also actively used in the maritime field, such as large-scale systems such as ships and offshore plants. In this paper, we tried to build a digital twin of coastal waters using a ship-handling simulator. The digital twin of the coastal waters developed in this way can be used to safely manage Korea's coastal waters, where maritime traffic is complicated, by providing a actual maritime traffic data. It can be usefully used to develop and advance technologies related to maritime autonomous surface ships and intelligent maritime traffic information services in coastal waters. In addition, it can be used as a 3D-based monitoring equipment for areas where physical monitoring is difficult but real-time maritime traffic monitoring is necessary, and can provide functions to safely manage maritime traffic situations such as aerial views of ports/control areas, bridge views/blind sector views of ships in operation.

  • PDF

Experimental Design of Column Flotation for Recovery of High Grade Molybdenite (고품위 몰리브덴 회수를 위한 컬럼부선 요인설계)

  • Hyun Soo Kim;Purev Oyunbileg;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.34-44
    • /
    • 2023
  • In this work, column flotation using factorial design was performed for recovering high-grade molybdenite concentrate. First, the flotation concentrate from Samyang Mining Plant was regrinded to a mean size of 165, 116, 46.7, and 38.4 ㎛ for an increase of the liberation degree. Tests were carried out for various variables affecting column flotation, and then the concentrates with molybdenite grade and recovery of 98.3 % and 95.28 % were obtained, respectively. Also, regression was performed using the statistical analysis program (SPSS 25) with the factorial design and experimental data on particle size, flow wash-water velocity and depressant that affect high grade. From the results, a model equation was derived to predict the molybdenite grade (MG) and recovery (MR) with the relationship between column flotation variables. Factors such as depressant concentration + wash-water velocity and particle size + depressant concentration + wash-water velocity were smaller than the significance level (0.05) and had a significant effect on the dependent variable, grade, and in the recovery model, only particle size and wash-water velocity factors affected the dependent variable, recovery.

Maritime Safety Tribunal Ruling Analysis using SentenceBERT (SentenceBERT 모델을 활용한 해양안전심판 재결서 분석 방법에 대한 연구)

  • Bori Yoon;SeKil Park;Hyerim Bae;Sunghyun Sim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.843-856
    • /
    • 2023
  • The global surge in maritime traffic has resulted in an increased number of ship collisions, leading to significant economic, environmental, physical, and human damage. The causes of these maritime accidents are multifaceted, often arising from a combination of crew judgment errors, negligence, complexity of navigation routes, weather conditions, and technical deficiencies in the vessels. Given the intricate nuances and contextual information inherent in each incident, a methodology capable of deeply understanding the semantics and context of sentences is imperative. Accordingly, this study utilized the SentenceBERT model to analyze maritime safety tribunal decisions over the last 20 years in the Busan Sea area, which encapsulated data on ship collision incidents. The analysis revealed important keywords potentially responsible for these incidents. Cluster analysis based on the frequency of specific keyword appearances was conducted and visualized. This information can serve as foundational data for the preemptive identification of accident causes and the development of strategies for collision prevention and response.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.