DOI QR코드

DOI QR Code

Experimental Design of Column Flotation for Recovery of High Grade Molybdenite

고품위 몰리브덴 회수를 위한 컬럼부선 요인설계

  • Hyun Soo Kim (Department of Advanced Energy Engineering, Chosun University) ;
  • Purev Oyunbileg (Department of Advanced Energy and Resources Engineering, Chosun University) ;
  • Chul-Hyun Park (Department of Advanced Energy Engineering, Chosun University)
  • Received : 2023.12.05
  • Accepted : 2023.12.13
  • Published : 2023.12.31

Abstract

In this work, column flotation using factorial design was performed for recovering high-grade molybdenite concentrate. First, the flotation concentrate from Samyang Mining Plant was regrinded to a mean size of 165, 116, 46.7, and 38.4 ㎛ for an increase of the liberation degree. Tests were carried out for various variables affecting column flotation, and then the concentrates with molybdenite grade and recovery of 98.3 % and 95.28 % were obtained, respectively. Also, regression was performed using the statistical analysis program (SPSS 25) with the factorial design and experimental data on particle size, flow wash-water velocity and depressant that affect high grade. From the results, a model equation was derived to predict the molybdenite grade (MG) and recovery (MR) with the relationship between column flotation variables. Factors such as depressant concentration + wash-water velocity and particle size + depressant concentration + wash-water velocity were smaller than the significance level (0.05) and had a significant effect on the dependent variable, grade, and in the recovery model, only particle size and wash-water velocity factors affected the dependent variable, recovery.

본 연구에서 고품위 몰리브데나이트 정광회수를 위해 요인설계를 이용한 컬럼부유선별을 수행하였다. 먼저 삼양 마이닝 플랜트의 부유선별 정광의 단체분리 향상을 위해 평균 입도 165, 116, 46.7 및 38.4 ㎛로 각각 재분쇄하였다. 컬럼부선에 영향을 미치는 다양한 변수에 대한 실험을 수행하였으며 MoS2 품위와 회수율이 각각 98.3 %와 95.28 %인 정광을 얻었다. 또한, 고품위에 영향을 미치는 입도 크기, 세척수 속도 및 억제제에 관한 요인설계 및 실험 데이터를 확보하고 통계분석(SPSS 25) 프로그램을 이용해 회귀분석하였다. 결과로부터, 컬럼부선 변수들 간의 상관관계와 품위(MG) 및 회수율(MR)을 예측할 수 있는 모델식을 도출하였다. 억제제 농도+세척수 속도 및 입도 크기+억제제 농도+세척수 속도의 요인들은 유의수준(0.05)보다 작아 종속변수인 품위에 뚜렷한 영향을 주고 있으며 회수율 모형의 경우, 입도 크기와 세척수의 요인만이 종속변수인 회수율에 영향을 주었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20227A10100030).

References

  1. Gupta, C. K., 2017 : Extractive metallurgy of molybdenum, Routledge, Now York.
  2. Purev, O., Kim, H.S., Park, C.-H., 2022 : Mineralogical Characteristics and Fundamental Study of Flotation for Molybdenum Ore, Resources Recycling, 31(6), pp.73-80. https://doi.org/10.7844/kirr.2022.31.6.73
  3. Jeon, H.-S., Lee, E.-S., Baek, S.-H., et al., 2016 : Recovery of High-Grade Molybdenite Concentrate for Lubricant Use by Froth Flotation, Journal of the Korean Society of Mineral and Energy Resources Engineers, 53, pp.219-230. https://doi.org/10.12972/ksmer.2016.53.3.219
  4. Srdjan, M. B., 2007 : Handbook of flotation reagents: Chemistry, Theory and Practice, Elsevier Science & Technology Books, Canada.
  5. Park, C.-H., Subasinghe, N., Han, O.-H., 2015 : Amenability testing of fine coal beneficiation using laboratory flotation column, Materials Transactions, 56, pp.766-773. https://doi.org/10.2320/matertrans.M2014462
  6. Park, C.-H., 2021 : Estimation of Rate Con stan ts an d Mixing Characteristics in Flotation Columns, Applied Sciences, 11(21), 10084.
  7. Ki-Seon An, 2019 : Control of gas dispersion characteristics and bias in column flotation of sulfide minerals, Master's thesis at Chosun University.
  8. Park, C.-H., Jeon, H.-S., Kim, B.-G., et al., 2009 : Froth Flotation of Molybdenite Ore from Dong-won NMC Mine, Journal of the Korean Society of Mineral and Energy Resources Engineers, 46, pp.754-760.
  9. Hunter, W.G., Hunter, J.S., 1978 : Statistics for experimenters, Interscience, New York 1978, 453.
  10. Bedekovic, G. A., 2016 : study of the effect of operating parameters in column flotation using experimental design, Physicochemical Problems of Mineral Processing, 52(2), pp.523-535.
  11. Xia, Y., Peng, F., 2007 : Selection of frothers from residual organic reagents for copper-molybdenite sulfide flotation, International Journal of Mineral Processing, 83, pp.68-75. https://doi.org/10.1016/j.minpro.2007.04.006
  12. Sahbaz, O., 2013 : Determining optimal conditions for lignite flotation by design of experiments and the halbich upgrading curve, Physicochemical Problems of Mineral Processing, 49(2), pp.535-546.
  13. Li, H., Zhou, Z., Xu, Z., et al., 2005 : Role of acidified sodium silicate in low temperature bitumen extraction from poor-processing oil sand ores, Industrial & Engineering Chemistry Research, 44(13), pp.4753-4761.
  14. Sivamohan, R., 1990 : The problem of recovering very fine particles in mineral processing-a review, International Journal of Mineral Processing, 28(3-4), pp.247-288. https://doi.org/10.1016/0301-7516(90)90046-2
  15. Finch, J.A., Dobby, G.S., 1991 : Column flotation: A selected review. Part I, International Journal of Mineral Processing, 33(1-4), pp.343-354. https://doi.org/10.1016/0301-7516(91)90062-N
  16. Goodall, C., O'Connor, C., 1991 : Pulp-froth interactions in a laboratory column flotation cell, Minerals Engineering, 4(7-11), pp.951-958. https://doi.org/10.1016/0892-6875(91)90076-8
  17. Tao, D., Luttrell, G., Yoon, R.-H., 2000 : A parametric study of froth stability and its effect on column flotation of fine particles, International Journal of Mineral Processing, 59(1), pp.25-43. https://doi.org/10.1016/S0301-7516(99)00033-2
  18. Laplante, A., Toguri, J., Smith, H., 1983 : The effect of air flow rate on the kinetics of flotation. Part 2: The transfer of material from the froth over the cell lip, International Journal of Mineral Processing, 11(3), pp.221-234. https://doi.org/10.1016/0301-7516(83)90027-3
  19. Johansson, G., Pugh, R., 1992 : The influence of particle size and hydrophobicity on the stability of mineralized froths, International Journal of Mineral Processing, 34(1-2), pp.1-21. https://doi.org/10.1016/0301-7516(92)90012-L
  20. Subrahmanyam, T., Forssberg, E., 1988 : Froth stability, particle entrainment and drainage in flotation-a review, International Journal of Mineral Processing, 23(1-2), pp. 33-53. https://doi.org/10.1016/0301-7516(88)90004-X
  21. Xu, M., Finch, J., Uribe-Salas, A., 1991 : Maximum gas and bubble surface rates in flotation columns, International Journal of Mineral Processing, 32(3-4), pp.233-250. https://doi.org/10.1016/0301-7516(91)90070-Y
  22. Shukla, S.C., Kundu, G., Mukherjee, D., 2010 : Study of gas holdup and pressure characteristics in a column flotation cell using coal, Minerals Engineering, 23(8), pp.636-642. https://doi.org/10.1016/j.mineng.2010.03.005
  23. Li, Y., Zhao, W., Gui, X., et al., 2013 : Flotation kinetics and separation selectivity of coal size fractions, Physicochemical Problems of Mineral Processing, 49(2), pp.387-395.
  24. Brozek, M., Mlynarczykowska, A., 2013 : An analysis of effect of particle size on batch flotation of coal, Physicochemical Problems of Mineral Processing, 49(1), pp.341-356.