• Title/Summary/Keyword: 플랜지

Search Result 490, Processing Time 0.024 seconds

Experiments on the flange wrinkling for a deep-drawn rectangular container (사각용기 드로잉시의 플랜지 주름에 관한 실험)

  • 이계섭;이기환;박천희;한영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.123-127
    • /
    • 1996
  • The tendency of wrinkling formation on the flange of a deep-drawn rectangular container was investigated experimentally under different process conditions. Such process variables as blank size, sheet thickness, blank-holding force, and depth of drawing are chosen to examine their effects on the flange wrinkles of the products. Number and amplitudes of the wrinkles are measured along the periphery of the flange and compared between each case of process condition.

  • PDF

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.

A Study on the Effect of Hot Lines and the Assembly of Flange for a Refrigerator to Reduce Dew Generation (냉장고 Flange부 이슬 맺힘 방지를 위한 열선의 영향 및 조립에 관한 연구)

  • Kim, Na Hyun;Cho, Jong Rae;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.391-396
    • /
    • 2015
  • When the temperature of a flange in a refrigerator is reduced to the dew point, condensation is generated on the flange. Generally, hot lines, having a temperature of $35^{\circ}C$, are located near the flange to increase its surface temperature above the dew point. Hot lines are installed in close contact with the flange in order to increase the heat transfer from the hot lines to the flange surface. Through this work, the effects of the hot line shape and installation conditions, including a gap between the hot line and flange, and the function of a spacer in the inner case of the refrigerator were investigated. Additionally, an optimal shape of the inner case for easy assembling is proposed considering the contact between the hot line and flange.

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF

A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Nearby Conducting Strip from the Viewpoint of Near-Field Scanning Microscopy (근접주사현미경의 관점에서 플랜지된 평행평판 도파관과 근접도체스트립과의 결합에 관한 연구)

  • Lee, Jong-Ig;Ko, Ji-Hwan;Cho, Young-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2260-2266
    • /
    • 2009
  • In this paper, the problem of electromagnetic coupling between a slit fed by a flanged parallel-plate waveguide (FPPW) and a nearby conducting strip parallel to the slit is studied as a simplified problem for a near-field scanning microscopy (NSM). The characteristics of the FPPW are investigated from the results for the variations of the equivalent slit admittance, the reactive powers near the slit inside and outside the FPPW, the magnitude and phase of the voltage reflection coefficient of the TEM wave. The performance of the proposed apparatus as an NSM is tested by examining the effects of various geometrical parameters such as guide height, slit width, strip width, distance between slit and strip, and the ratio of slit width to guide height on the magnitude and phase of the voltage reflection coefficient of the TEM wave. From the results for the voltage reflection coefficient against the strip offset from the slit, it is found that a slit in the FPPW with smaller guide height gives higher scanning resolution and the phase variation is more sensitive than the magnitude variation.

A Simple Formula for Ultimate Strength Prediction of Hull Girders (선각거더의 최종강도 간이계산식)

  • J.K. Paik;A.E. Mansour
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.83-97
    • /
    • 1995
  • The aim of this study is to derive a simple formula for predicting ultimate strength of hull girders under vertical bending moment. The existing formulas have been reviewed and classified into analytical approach, empirical approach and linear approximate approach. It is known that the ship hull will reach the ultimate limit state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical formula is derived. The accuracy of the formula has been verified by a comparison of the experimental and the numerical results.

  • PDF

An Alternative Simplified Approach in Solving for the Inelastic Buckling Strengths of Singly Symmetric Non-Compact Stepped I-Beams (일축대칭 비조밀 스텝 I형보의 비탄성 좌굴강도 산정을 위한 단순방법)

  • Alolod, Shane;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.123-134
    • /
    • 2019
  • This paper proposed a new design equation for the inelastic lateral torsional buckling (LTB) of singly symmetric stepped I-beams with non-compact flange sections. The proposed equation was generated using a finite element program, ABAQUS, and a statistical program, MINITAB. The parameters used were the stepped beams parameters; ${\alpha}$, ${\beta}$, and ${\gamma}$ and the length-to-height ratio ($L_b/h$) of the beam. The proposed equation was further validated by means of experimental test, where beams were subjected to four-point bending and supported by roller and lateral braces near the end supports. In addition, finite element models were simulated using the same parameters used in the experimental test to verify the results of the test conducted. It was proved that LTB capacity calculated from the proposed equation is accurate and conservative in comparison with the yielded values from the FEM and actual test, making it a reliable and safe approach in calculating the buckling capacities of singly symmetric stepped beams with non-compact flange sections.