현재 치과에서 상용되는 치아미백법은 과산화수소와 레이저를 사용하여 의사가 직접 치료를 하고 있다 [1]. 단기간에 높은 미백효과를 얻기 위해, 고농도의 과산화수소를 이용하게 되는데, 이는 암 또는 심장병 등을 유발시키는 원인이 될수 있음으로 인체에 매우 유해하다 [3,4]. 우리는 식품의약품안정청에서 규제하고 있는, 카바마이드 퍼옥사이드(15%)를 사용하였다. 카마바이드 퍼옥사이드(15%), 수증기, 저온 대기압 플라즈마 제트를 사용하여 미백효과를 관찰하였다. 기체 유량은 1,000 sccm 이며, 공기와 질소를 사용하였다. 미백효과를 보기 위한 대상으로는 우치(牛齒)를 사용하였으며, 플라즈마를 처리하여 미백효과를 관찰하였다. 실험 대조시료군으로는 카바마이드 퍼옥사이드(15%)와 수증기(0.4%)를 첨가한 다음, 공기 플라즈마와 질소 플라즈마를 조사하여 비교해보았다. 수증기를 첨가한 이유는 활성산소의 농도를 높이기 위함이며, 탁월한 미백효과를 얻을 수 있다. 실험을 통하여 우치에 카바마이드 퍼옥사이드(15%)와 수증기(0.4%)를 처리한 경우 플라즈마의 미백효과가 탁월함을 보였다. 이때 CIE색좌표 ($L^*a^*b^*$)에서 명도도가 높아짐을 보았다. 미백효과에 대한 측정은 측색분광기(cm-3500d)를 이용하였다. 라만은 빛이 어떤 매질을 통과할 때 빛의 파장을 변화시켜 빛의 일부는 진행방향에서 이탈해 다른방향으로지행하는 현상을 산란이라고 한다. 이를 이용하여 빛의 파장을 변화시키는 현상을 라만산란이라고 한다. 이것을 이용하여 같은 우치의 표면을 플라즈마 처리 전 후를 라만을 통해 측정하였다. 대기압 저온 플라즈마에서 발생되는 ROS는 미백효과에 큰 영향을 미친다. 모든 실험의 플라즈마 처리시간은 최대 20분까지로 하였다.
This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.
바늘형 전극과 컵형 전극을 사용한 대기압 플라즈마 제트 장치의 플라즈마 분출 특성을 조사한다. 바늘형 전극은 원통형 주사기 바늘을 사용하였다. 컵형 전극은 냉음극 형광 램프의 전극을 사용하였다. 방전 가스는 Ar을 사용하고 가스의 유량은 3 lpm이다. 구동 전원은 DC-AC 인버터를 사용하고 구동 주파수는 40 kHz이다. 방전 전압-전류 특성과 전류별 플라즈마 방출 길이를 측정한 결과, 원통형 바늘보다 컵형 전극이 방전 개시 전압이 낮았으며 동일 전류에서 플라즈마 방출 길이가 더 길다.
방사성 폐기물의 운반이나 장기 보관 시 방사성 물질의 침출을 차단하기 위한 유리화 기술을 실현하기 위해 이송식 아크 플라즈마에 대해 전산해석을 수행하였다. 본 연구에서는 운전전류나 아크길이와 같은 운전조건 변화에 따른 열플라즈마의 특성 변화 뿐만 아니라 150 kW급 고출력 이송식 아크 플라즈마의 최적 설계를 위하여 핵심 부품인 파일럿 노즐의 길이와 직경 변화에 따른 예상 용융영역을 전산해석 하여 방사성 폐기물의 유리화 기술을 상업적으로 이끌어내는데 기초 자료를 제공하고자 하였다. 노즐직경은 4, 5, 6 mm로 변화시켰으며, 길이는 2, 4, 6mm로 하였다. 이러한 다양한 설계조건에 대하여 운전변수로는 전류 200 A, 방전 기체인 알곤의 유량 15 L/min, 아크 길이 2 cm로 고정하였다. 전산해석 결과 노즐직경이 작을수록 아크압축 효과에 의해 중심부에서 최고 온도가 높은 열플라즈마 제트를 발생시킬 수 있으나, 반경방향으로 온도구배가 커서 고온 구간이 급격히 감소하는 경향이 예상되었다. 반면 노즐직경이 증가할수록 아크 압축효과는 줄어들지만 반경방향으로 온도가 완만히 감소하여 콘크리트가 대부분인 유리화 대상물질을 충분히 용융시킬 수 있는 $2,600^{\circ}C$ 이상의 고온 면적이 넓어지게 될 것으로 예상되었다. 또한, 노즐길이가 줄어들 경우 아크방전의 안정성은 다소 떨어 질 수 있으나 수 있으나 고온의 열플라즈마 제트가 반경방향으로 효과적으로 넓어 질 수 있음이 예측되었다. 따라서 고온 영역의 확장 관점에서 이송식 아크 플라즈마 토치를 제작할 경우 아크의 안정성을 유지하는 범위 내에서 파일럿 노즐의 직경을 크게 하고 길이는 짧게 하는 것이 효과적인 유리화를 위해 유리할 것으로 예상되었다.
현재 태양전지 도핑 공정은 퍼니스와 레이저 도핑공정이 주요공정으로 사용되고 있다. 퍼니스 도핑 공정은 POCl3 가스를 도펀트로 사용하여 확산 공정으로 진행한다. 퍼니스 도핑공정은 고가의 장비와 유독 가스사용으로 인한 처리 문제, 웨이퍼의 국부적인 부분에 고농도 도핑을 하는데는 제한적이다. 레이저를 사용한 선택적 도핑의 경우 고가의 레이저장비가 요구되어진다. 본 연구는 기존 도핑공정 문제점을 보완한 저가이면서 새로운 구조의 대기압 플라즈마 제트를 개발하였고, 이를 통한 인산을 사용하여 선택적 도핑에 관한 연구를 하였다. 대기압 플라즈마 제트는 Ar 가스를 주입하여 저주파(1 kHz~100 kHz) 전원을 인가하여 플라즈마를 발생시키는 구조로 제작하였다. 웨이퍼는 태양전지용 P-type shallow 도핑된(120 Ohm/square) 웨이퍼를 사용하였고, 도펀트는 스핀코터를 사용하여 도포를 하였다. 인산의 농도는 10%, 50%, 85%를 사용하였다. 플라즈마 발생 전류는 70 mA, 120 mA에서 실험을 하였다. 대기압 플라즈마 처리시간은 30 s, 90 s, 150 s 처리하여 도핑공정을 진행하였고, 도핑 프로파일은 SIMS (Secondary Ion Mass Spectroscopy)측정을 통하여 분석을 진행하였다. 도펀트의 농도와 전류가 높아짐에 따라서, 도핑 처리시간이 길어짐에 따라서 도핑 깊이가 깊어짐을 확인하였다. 도핑 프로파일을 분석하여 Effective carrier lifetime을 얻었으며, 도펀트 농도가 증가하거나 도핑 처리시간이 길어짐에 따라서 Effective carrier lifetime 낮아짐을 확인하였다.
플라즈마는 반도체, 우주 추진체, 수소 에너지, 디스플레이, 태양전지 등 다양한 산업 분야에서 활용되고 있다. 특히 대기압 플라즈마는 기압을 낮추기 위한 별도의 기압 조정 설비가 필요하지 않아 활용도가 매우 높다. 이번호에서는 최첨단의 대기압 플라즈마 장치인 '멀티가스 데미지프리 플라즈마 제트', '리니아형 데미지프리 플라즈마', '온도제어 플라즈마'를 소개한다. 이 원고는 도쿄공업대학 종합이공학연구과 창조에너지전공의 오키노 아키토시 교수가 월간 OPTRONICS 2012년 6월호에 기고한 내용으로 그린광학의 유정훈 팀장이 번역에 도움을 주었다.
본 연구는 고온 고압의 전열(electrothermal)플라즈마내에 존재하는 구리원자의 발광 스펙트럼을 정량적으로 분석하는 방법에 대해 논하였다. 플라즈마는 플라즈마 발생장치내에 설치되어 있는 모세관 양단의 두 개의 전극이 방전함으로써 발생하며 고속으로 대기를 향해 전파해 나간다. 플라즈마의 특성을 분석하기 위해서는 플라즈마의 여기온도나 전자밀도와 같은 물리량의 측정이 필요하다. 그러나 여기온도나 전자밀동와 직접적으로 관련이 있는 발광 스펙트럼은 분광시스템의 파장에 따른 서로다른 응답 특성 때문에 왜곡되어질 수 있다 따라서 본 연구에서는 펄스 플라즈마 제트로부터 얻은 구리원자의 발광 스펙트럼을 정밀하게 보정하는 방법을 제시하였다.
스파크제트 액츄에이터(Sparkjet Actuator), 혹은 플라즈마 합성 제트 액츄에이터(Plasma Synthetic Jet Actuator)는 능동 유동 제어 장치의 일종으로 신쎄틱 제트와 같은 기존의 능동 유동 제어 장치에 비해 더 강한 제트를 분출할 수 있기 때문에 초음속 유동 제어에 대한 가능성이 높다고 여겨지고 있다. 스파크제트 액츄에이터는 아크 플라즈마를 이용하여 캐비티(Cavity) 내부에 고온, 고압 유동을 발생시키고 이를 오리피스(Orifice) 혹은 노즐 목을 통해 분출시킴으로써 제트를 만들어낸다. 본 연구는 캐비티 내부에 위치한 전극의 위치를 변화시킴으로서 스파크제트 액츄에이터의 추력 및 유동 특성에 생기는 변화를 수치적으로 확인하였다. 전극 위치가 캐비티의 바닥에 가까워질수록 충격량이 증가하였고 캐비티 내부 평균 압력이 높게 유지되었다. 전극 위치가 캐비티 전체 높이의 25% 위치에 있을 때 2.515 μN·s의 충격량이 발생하였고 75% 위치에 있을 때 2.057 μN·s의 충격량이 발생하였다. 전극 위치가 캐비티 전체 높이의 50%에 있을 때보다 충격량이 각각 대략 9.92%와 -10.09% 정도 변화하였다.
대기압 플라즈마 제트 장치의 유량 변화에 대한 플라즈마 방전 특성을 실험적으로 조사하고 이를 유체역학적으로 해석하였다. 유리관에 주입되는 아르곤 기체의 유량 변화에 대한 레이놀즈 수(Re)로 결정되는 기체 흐름의 형태 변화와 베르누이 정리에 의한 압력 변화가 플라즈마 발생에 영향을 준다. 유리관 내부에 발생하는 플라즈마의 길이 변화의 실험을 통하여, 아르곤 기체에 대한 레이놀즈 수가 Re<2,000이면 층류이고, Re>4,000이면 난류가 형성된다. 이는 일반 유체에서 알려진 결과와 일치한다. 층류에서 유량의 증가로 플라즈마의 길이가 증가한다. 층류와 난류의 전환 영역에서 플라즈마의 길이는 줄어든다. 난류 영역에서는 방전 기체의 흐름이 불규칙함으로서 방전 경로가 흐트러져 플라즈마 칼럼의 길이가 매우 짧아지고 급기야 플라즈마가 소멸된다. 층류에서 주입 유량의 증가로 유리관 내의 유속이 증가하면, 베르누이 정리에 의하여 유리관 내부의 압력이 낮아진다. 관내의 압력이 낮아지면, 파센 법칙에 의하여 관내의 전기장의 세기가 증가하여 방전 전압이 낮아진다. 따라서 주입 유량이 증가하면, 동일한 구동 전압에서 유리관에 발생하는 플라즈마의 길이는 길어진다. 층류의 방전은 유리관 밖에서도 층류의 흐름이 일정 길이로 유지되므로 시료 표면에 조사되는 플라즈마 빔의 직경은 유리관의 직경 이하로 유지된다.
열 플라즈마(thermal plasma) 는 저온 플라즈마(cold plasma)와 달리 이온과 전자와 중성입자들이 충분한 에너지 교환으로 인해 열평형 상태를 가진다. 열 플라즈마를 생성 시킬 때 전극 사이에서 아크방전을 시켜 제트 형태로 플라즈마를 발생시키는 것을 플라즈마 토치(plasma torch)라고 한다. 이러한 플라즈마 토치는 화학 원소 분해, 강판 절단, 유해 기체 분해 등으로 널리 사용되고 있다. 본 연구에서는 플라즈마 토치를 수치적으로 해석하여 플라즈마의 특성을 알아보았다. 수치해석적 접근방법으로 열 플라즈마는 LTE (local thermodynamic equilibrium)을 가정하였으며 one-fluid 이론을 적용하였다. 이때 사용된 코드는 DCPTUN으로서 $C^{+}^{+}$로 작성된 열플라즈마 유동의 특성해석 코드인 동시에 SIMPLE 알고리즘을 이용한 유체 코드이다. 시뮬레이션은 2차원 축대칭이며 정렬격자계 및 비정렬격자계 모두에서 사용이 가능하도록 되어있다. 또한 맥스웰 방정식을 통해 electromagnetic field를 풀도록 하여 RF 시뮬레이션이 가능하도록 하였다. 이와 같은 열 플라즈마 시뮬레이션을 통해서 플라즈마 토치의 특성을 알아보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.