• Title/Summary/Keyword: 플라스틱 링

Search Result 103, Processing Time 0.018 seconds

Regional cooperation of NOWPAP MERRAC against marine litter from sea-based activities in the Northwest Pacific region (북서태평양 지역의 해상기인 해양쓰레기 저감을 위한 NOWPAP 방제지역활동센터의 지역협력 활동현황 분석 및 향후 발전방향)

  • Noh, Hyon-Jeong;Oh, Jeong-Hwan;Kang, Seong-Gil;Kang, Chang-Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.150-159
    • /
    • 2008
  • The marine litter generated as by-products of human activities and economic development enters to the sea through rivers or stream Indirectly, and through sea-based activities directly. It is commonly comprised of materials that degrade very slowly, such as various plastic products, polystyrene, glass, rubber, metal, wood, derelict fishing nets, wire, rope and so on. Such litter is found in the water column and on the seafloor as well as coastal areas In the Northwest Pacific region. It causes injury or death of human and other living organisms and also accident or damage of the vessel. It is not only a problem of country but also regional and/or global problem because it is transported by currents and winds from one country to another. In this regard, Northwest Pacific Action Plan (NOWPAP) Marine Litter Activity (MALITA) project had been carried out during 2006-2007 biennium and NOWPAP Regional Action Plan on Marine Litter (RAP MALI) has been also continuously implemented in the 2008-2009 biennium as next phase step of MALITA. MERRAC, one of four Regional Activity Centres (RACs) of NOWPAP, has developed monitoring guidelines, sectoral guidelines, and brochures related to sea-based marine litter and port reception facilities and services through MALITA project. Based upon these output, MERRAC will continuously implement relevant activities of RAP MALI in order to help to establish and improve a regional mechanism to deal with the sea-based marine litter problem. This paper aims to introduce MERRAC activities under MALITA and RAP MALI, and to suggest several recommendations to reduce marine litter in the NOWPAP region.

  • PDF

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Seed Longevity of Rice Germplasm in the National Agrobiodiversity Center (종자은행 보존 벼 유전자원의 생태형별 종자수명)

  • Na, Young-Wang;Choi, Yu-Mi;Baek, Hyung-Jin;Lee, Sok-Young;Kang, Jung-Hun;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • The purpose of this study was to know the seed longevity of rice (Oryza sativa L.) germplasm for effective viability monitoring. The longevity was determined via germination tests of 3,066 accessions of rice germplasm from the National Agrobiodiversity Center, Rural Development Administration, Korea. The rice germplasm accessions have been conserved at a mid-term storage ($4^{\circ}C$, 30% RH) in plastic bottle containing dehydrated (blue) silica-gel and long-term storage ($-18^{\circ}C$, 35% RH) in hermetically sealed metal can on either sides for 25~26.5 years. The final germination percentages of 3,066 rice germplasm accessions of $6.5{\pm}1.0%$ seed moisture content with 94% initial germination stored at $4^{\circ}C$ for 26.5 years declined to 47% while at $-18^{\circ}C$ for 25 years maintained high germinability as 93%. Germination time courses, which represent the average performance of rice ecotypes stored at $4^{\circ}C$ and 30% RH, were fitted regression equation, to calculate the time at which germination characteristically declined to 50% ($P_{50}$). These $P_{50}$ values of Indica, Japonica, Javanica and Tongil type in rice were 39.9, 22.9, 25.4 and 31.8 years, respectively. The rice germplasm stored at $4^{\circ}C$ could be clustered in 4 groups using quartile of final germination after 26.5 years storage. The seed longevity ($P_{50}$) of each group was estimated by regression equation of changed germination percentages according to storage periods. The $P_{50}$ values of group I, group II, group III and group IV were 21.1, 23.6, 30.0 and 75.7 years.