• Title/Summary/Keyword: 프리캐스트 콘크리트 교량바닥판

Search Result 36, Processing Time 0.032 seconds

Experimental Study for the Bending Behavior of Precast Concrete Panel and Composite Deck for Railway Bridge (철도교 바닥판용 프리캐스트 패널과 합성 바닥판의 휨거동에 대한 실험적 연구)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Youn, Seok-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.21-31
    • /
    • 2018
  • This paper presents an experimental investigation on the structural performance of precast ribbed panel specimens and bridge deck specimens fabricated from the panels. The panel specimens are developed for permanent deck forms of railway bridges (PSC girder). The decks of railway bridges have short lengths compared with highway bridges. Therefore, precast panels for railway bridges are different from those of highway bridges. The precast panels have ribs designed for crack control at the bottom of the sections. Two kinds of specimens were examined: one with 400-mm width and one with 1200-mm width. Three specimens of each type were fabricated, and a total of 12 specimens were tested. In this test, the ultimate load, strain of the reinforcement and concrete, crack width, deformation, and slip were measured. The structural performance of the specimens was assessed using the Korea railway bridge design code and Eurocode. All specimens met the current design criteria for structural strength and serviceability.

Shear Stiffness of Shear connections in Full-Depth Precast Concrete Deck Bridge (프리캐스트 바닥판 교량 전단연결부의 전단강성)

  • Shim, Chang Su;Chung, Chul Hun;Kim, Chul Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.749-758
    • /
    • 1998
  • The evaluation of shear stiffness of shear connection in composite bridges with CIP concrete deck is analysed. Shear stiffness of shear connection in full-depth precast concrete deck bridges is obtained from experiments. 3-dimensional finite element analyses of push-out specimen are carried out to investigate the effects of characteristics of filling material strength in shear connection on shear stiffness and local stress distribution. The load-slip relations obtained from the analyses are compared with those of experiments. The equation of initial shear stiffness of shear connection in precast concrete deck bridge is proposed. Linear analyses are performed to evaluate the effects of the shank diameter of shear connector and the strength of mortar on the characteristics of deterioration and failure load obtained by the failure criterions of each material. The failure loads are estimated and compared with test results.

  • PDF

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

Construction of the longest open toped steel box girder composite bridge in the country (국내 최장 개구제형 합성형교 시공)

  • Oh, Hyun-Chul;Ma, Hyang-Wook;Kim, In-Gyu;Kim, Young-Jin;Jang, Seung-Kyoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.165-166
    • /
    • 2009
  • This paper is to research for construction of the longest open toped steel box girder composite bridge using precast concrete deck in the country. This type bridge can bring down the construction costs by reducing the steel's weight used it's girders. And, it also can reduce working hours for construction over 6months by applying the precast deck system. I will introduce the process of construction the longest this type bridge within the country named Seochon Bridge

  • PDF

Experimental Study on Connectability of Half-Depth Precast Deck Panels with Loop Joint (루프이음을 갖는 반단면 프리캐스트 바닥판 이음부 성능에 대한 실험적 연구)

  • Chung, Chul Hun;Sung, Yeol Eun;Hyun, Byung Hak;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.581-590
    • /
    • 2008
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. In this paper, three types of the detail for joints was selected and their structural performance in terms of strength and crack contral was investigated through static tests on composite beams. Form the results, the validity of loop joints for continuity of half-depth precast deck was observed and especially an overlapping length of loop joint and transverse reinforcement were checked. The results suggest that increasing the loop overlapping length increases the flexural strength of half-depth precast deck with loop joints. In terms of crack contral, the loop joint with transverse reinforcement showed better performance.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF