• Title/Summary/Keyword: 프로판/공기

Search Result 38, Processing Time 0.025 seconds

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Plasmatron Development for a Hydrogen Production (수소 생성을 위한 플라즈마트론 개발)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal condition of the SynGas production by reforming of propane using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on propane conversion, yield of hydrogen and $H_2/CO$ ratio as well as correlation of syngas were studied. When the variations of $O_2/C_3H_8$ flow ratio, $H_2O/C_3H_8$ flow ratio and $CO_2/C_3H_8$ flow ratio were $0.94{\sim}1.48,\;4.3{\sim}10\;and\;0.8{\sim}3.05$ respectively, Under the condition mentioned above, result of $H_2O/C_3H_8$ flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O/C_3H_8$ flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$ and the ratio of hydrogen to carbon monoxide($H_2/CO$) were $3.89{\sim}4.86$.

A Study on the Dispersion of Hydrogen Gas in Atmosphere (대기 중 수소가스의 확산거동에 관한 연구)

  • Ahn Bum Jong;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. Therefore, there is a considerable demand for further research concerning the dispersion of hydrogen/air mixture clouds and the possible consequences of their ignition. In this study, the dispersion of hydrogen gas in atmosphere has been analysed with atmospheric condition by concerning the buoyancy of hydrogen. The hazard ranges to wind direction increase with wind speed and the stability of atmosphere. The concentration of hydrogen at just above ground is nearly zero due to buoyancy of hydrogen gas. Therefore, the ignition probability of hydrogen gas cloud is low and the hazard of explosion or fire associated with hydrogen gas is relatively low comparing with the other fuel gas such as propane or butane.

  • PDF

Micro Sensor Away and its Application to Recognizing Explosive Gases (마이크로 센서 어레이 제작 및 폭발성 가스 인식으로의 응용)

  • 이대식;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • A micro sensor array with 4 discrete sensors integrated on a microhotplate was developed for identifying the kinds and quantities of explosive gases. The sensor array consisited of four tin oxide-based thin films with the high and broad sensitivity to the tested explosive gases and uniform thermal distribution on the plate. The microhotplate, using silicon substrate with N/O/N membrane, dangling in air by Al bonding wires, and controlling the thickness by chemical mechanical process (CMP), has been designed and fabricated. By employing the sensitivity signal of the sensor array at 40$0^{\circ}C$, we could reliably classily the kinds and quantities of the explosive gases like butan, propane, LPG, and carbon monoxide within the range of threshold limit values (TLVs), employing principal component analysis (PCA).

A Study on Soot Formation in Premixed Constant-Volume Combustion at High Pressures (高壓下의 定積 豫混合氣燃燒에 있어서 煤煙생成에 關한 硏究)

  • 임재근;배명환;김종일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.589-597
    • /
    • 1992
  • The effect of pressure on soot formation in premixed propane-air combustion is investigated at high pressures over the pressure range of 1 to 5 MPa by using a specially designed constant volume combustion bomb. The combustiom chamber of disk type with eight spark plugs located on the circumference at an interval of 45deg is 100mm in diameter by 14mm thick. The end gases are compressed to high pressures by the eight converging flames. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique, and the burnt gas temperature during the same period is measured by the two-color method. It is found that the soot yield rises with 50 to 100% for the respective equivalence ratio range of 1.9-2.2 at an interval of 0.1 when the combustion pressure is increased from 1 to 5 MPa, and that the turbulent flames decrease in the soot yield as compared with the laminar flames because the burnt gas temperatures increase with the drop of heat loss.

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

A Study on the Natural Evaporation Capacity of LPG Container (액화석유가스 용기의 자연 증발량에 관한 연구)

  • Jo Young-Do;Kim Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.22-29
    • /
    • 2001
  • The number of gas containers and the period of exchanging gas containers are vsy important in designing liquefied petroleum gas(LPG) supply system for small capacity domain. And also the evaluation of remaining LPG in containers to be exchanged is very useful information in commerce. However seldon has been studied on calculating method about those with respect to gas consumption pattern. In this study, a simulation method was developed to estimate the evaporation capacity of LPG container, the mass gas flow rate from LPG container, the temperature and vapor pressure of LPG, and the remained LPG at containers to be exchange by using LPG property equations, mass balance equation, and heat balance equation. The simulation results were correlated well with experimental data. The overall heat transfer coefficient from air to LPG is approximately $9{\~}13 kcal/m^2{\cdot}hr{\cdot}^{\circ}C$ and does not strongly affect on the evaporation capacity of LPG container. The mass gas flow rate from LPG container is constant when the vapor pressure of LPG is within pressure regulator's control range. While, out of range, it suddenly reduce to a evaporation rate which is balanced with heat transfer from air. The evaporation capacity of LPG container increased with surrounding temperature and the composition of propane, and decreased drastically with continuous gas consumption. The number of gas containers divided the number of houses using gas supply system was reduced by using automatic gas feeding device.

  • PDF

A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes (Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.699-706
    • /
    • 2018
  • The permeation properties of plasma polymer membranes were studied for permanent gases such as He, $H_2$, $O_2$, $N_2$, $CH_4$ and condensable vapors such as $CO_2$, $C_2H_4$, $C_3H_8$. The plasma polymers were prepared by the discharge of microwave or radiofrequency(RF) wave. Hexamethyldisiloxane (HMDS) vapor was used as a monomer for plasma polymerization. In HMDS plasma-polymerized membranes prepared under microwave discharge, the permeability coefficient was dependent of the kinetic molecular diameter of the permeate gases. Additionally the membranes showed higher $O_2/N_2$ permselectivity compared to the plasma polymers from radiofrequency discharge. On the contrary, in the HMDS plasma-polymerized membranes prepared under radiofrequency discharge, the permeability coefficient was dependent of the critical temperature of the permeant gases. The membranes showed high selectivities of $C_2H_4$ and $C_3H_8$ over $N_2$. The permeability coefficient of plasma polymerized membranes prepared under microwave discharge was dependent of the molecular diameter of permeant gases because of high crosslinking density of the membrane. However, the crosslinking density of the plasma polymerized membranes prepared under RF discharge was lower because the energy density of RF wave is weaker than that of microwave. Hence, the permeability of RF plasma polymerized membranes became dependent of the critical temperature rather than molecular diameter of the gases.