• Title/Summary/Keyword: 프로파일 수정계수

Search Result 4, Processing Time 0.134 seconds

Elastohydrodynamic Lubrication Analysis of a Lundberg Profile-type Cylindrical Roller (Lundberg형 프로파일의 원통형 로울러의 탄성유체윤활 해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.353-359
    • /
    • 2013
  • The rollers and/or races in cylindrical and tapered roller bearings should be profiled to relieve high edge stress concentrations caused by their finite lengths and misalignment. In this study, a numerical analysis was performed to investigate the elastohydrodynamic lubrication (EHL) of a Lundberg profile-type cylindrical roller. A finite difference method with fully nonuniform grids and the Newton-Raphson method were used to present detailed EHL pressure distributions and film shapes, as well as the variations in the minimum and central film thicknesses with the profile modification coefficient. In the Lundberg profile, the maximum pressure and minimum film thickness always occurred near the edges. Proper modification of the Lundberg profile considerably increased the minimum film thickness.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Development of Maintenance Simulation System and Prediction of Chloride Ion Permeation for Marine Concrete Structures (해양콘크리트 구조물의 염해 예측 및 유지보수 시뮬레이션시스템 개발)

  • Lee, Chang Su;Kim, Meyong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.64-75
    • /
    • 2013
  • As both laboratory accelerated experiment and field exposure experiment were performed, at recent, the fifth field test at five year exposures was proceeded according to long period experimental plan. Field experiment, for the adoption of the developed evaluation model, which is consisted of the analysis of chloride penetration profile at gate bridges of sea-dike completed 30 years ago was carried out during upgrading the basic evaluation model with analyzing the annual field test data. The surface concentration of chlorides was replaced to the concentration of chloride of inner concrete near the surface chlorides among his research results at basic model. Maage's suggestion function was accepted too as a diffusion coefficient of chloride after verifying the change of diffusion coefficient by analysis of annual field test data. The comparison of field data with model predictions and the estimation of remaining life time demonstrates that the proposed updated model and maintenance simulation system can be used to predict the chloride penetration profile in the marine tidal zone and appropriate repair period and cost.

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.