재발 사건 자료(recurrent event data)는 연구 대상이 같은 종류의 사건을 여러 번 경험할 때 발생되는 자료 형태이다. 재발 사건간에 연관관계를 위해 프레일티가 사용된다. 프레일티 효과는 랜덤효과의 한 형태로 개인별 특성을 표현하기 위해 생존 분석에서 널리 적용되어 왔다. 본 논문에서는 이러한 개인별 효과가 시간에 따라 변할 수 있음을 가정하여 시간 가변 프레일티를 적용한다. 본 논문에서는 적용 사례로 범죄 재범 자료를 분석한다. 특히 일부 관측 대상들은 일정 기간 동안 연구에서 제외되는 불연속성을 경험하게 되며 이는 위험그룹(risk group)의 새로운 정의가 필요하다. 모수 추정을 위해 조각 상수 위험 함수가 사용되며 EM 알고리즘이 적용된다.
경쟁위험사건들은 다기관 임상시험과 같은 군집화된 임상연구에서 자주 관측되어진다. 본 논문에서는 하나의 군집으로 부터 얻어지는 경쟁위험 생존자료에 대해 공통 프레일티를 허락하는 결합 프레일티모형 접근법을 제안한다. 추론을 위해 어려운 적분 자체를 피하는 다단계 가능도를 사용하여, 대응하는 추론절차를 유도한다. 또한 실제자료 분석을 통해 제안된 방법을 예증한다.
프레일티모형에 대한 기존의 추론방법은 동측치가 많은 경우에 그 성능이 떨어진다. 그 이유는 사용된 경험적 우도함수가 동측치가 많은 자료에는 적합하지 않기 때문이다. 본 논문에서는 동측치가 많은 프레일티 모형에서의 새로운 추론방법을 제안한다. 이항형태의 경험적우도함수를 바탕으로 베이지안 부스트랩을 사용하여 모수의 사후분포를 구한다. 제안된 방법의 장점은 기존에 제안된 주변최대우도추정량에 비하여 계산이 수월하고 안정적인 결과를 제공하는데 있다. 이를 실증적으로 비교하기 위하여 제안된 방법을 주변최대우도추정량과 가상실험을 통하여 비교한다.
동물종양 실험에서는 종양발생 시간이 직접 관찰되지 않고 단지 자연사로 인한 관찰 시점이나 강제적으로 희생시킨 시점 이전에 종양이 발생했는지 유무만을 알 수 있다. 이와 같은 형태의 결측을 가진 자료를 분석하기 위해 3단계(건강$\rightarrow$종양발생$\rightarrow$사망) 모형이 널리 사용되고 있다. 본 논문에서는 자연사로 인한 사망 시간이 종속적인 중도절단으로 작용하여 사망 시간과 종양발생 시간이 종속될 때, 이를 모형에 반영하기 위해 감마 프레일티 효과를 도입하였다. 모수 추정은 종양발생 시간과 프레일티 효과의 결측을 다루기 위해 EM 알고리즘 방법을 사용하였다. 제안한 추정량의 소표본 성질을 살펴보기 위해 제안한 방법을 Lindsey와 Ryan (1993, 1994)의 방광암 자료에 적용하여 모수를 추정하였으며, 그 추정값을 바탕으로 모의실험을 수행하였다.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.499-510
/
2016
생존분석 회귀모형에서 적절한 변수를 선택하는 것은 매우 중요하다. 본 논문에서는 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 다수준 프레일티 모형 (multi-level frailty models)에서 벌점화 변수선택 방법 (penalized variable-selection method)의 절차를 소개한다. 여기서 모형 추정은 벌점화 다단계 가능도에 기초하며, 세 가지 벌점 함수 (LASSO, SCAD 및 HL)가 고려된다. 개발된 방법의 예증을 위해 벨기에 EORTC (European Organization for Research and Treatment of Cancer; 유럽 암 치료기구)에서 수행된 다국가/다기관 임상시험 자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 그 결과들의 상대적 장 단점에 대해 토론한다. 특히, 자료 분석 결과에 의하면 SCAD와 HL방법이 LASSO보다 중요한 변수를 잘 선택하는 것으로 나타났다.
통계적 모형에서 적절한 변수를 선택하는 것은 회귀분석에서 매우 중요하다. 최근 벌점 함수(예: LASSO 및 SCAD)와 함께 벌점화 가능도를 사용하는 변수 선택 방법들이 선형모형 및 일반화 선형모형과 같은 단순한 통계 모형에서 널리 연구되고 있다. 이러한 방법들의 주요 장점은 중요한 변수를 선택하고 동시에 회귀계수를 추정하는 것이다. 그러므로 이 방법들은 0으로 회귀계수를 추정함으로써 중요하지 않은 변수를 삭제한다. 이 논문에서는 콕스 비례 위험 모형의 한 확장인 준 모수적 프레일티 모형에서 벌점화된 다단계 가능도(h-likelihood; HL)를 기반으로 적절한 변수를 선택하는 방법을 연구한다. 이를 위해 세 가지 벌점 함수 LASSO, SCAD 및 HL을 사용한다. 본 논문에서는 변수선택을 효율적으로 하기 위해 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 새로운 함수를 개발하였다. 개발된 방법의 예증을 위해 전남대 의과대학 병원에서 수집된 유방암 생존자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 이 변수선택방법들의 상대적 장 단점에 대해 토론한다.
본 논문에서는 종말 사건에 대한 정보는 주어져 있지만 중간 사건이 구간 중도절단되었거나 연구 기간 도중에 추적이 끊겨 중간 사건의 발생 유무를 모르는 준 경쟁 위험 자료에 다중상태모형을 적용하여 모수를 추정하는 방법을 제안하였다. 이를 위해 상태 간 전이 강도는 정규 프레일티를 랜덤효과로 가진 Cox 비례위험모형을 따른다고 가정하였다. 다섯 가지 상태를 가진 다중상태모형에서 가능한 여섯 가지 경로별로 조건부 우도를 정의하였고 주변 우도를 구하기 위해 조정 가우스 구적법을 적용하였으며 뉴튼-랩슨 방법으로 최적 해를 구하였다. 모수의 95% 신뢰구간 포함률을 통해 제안한 방법의 소표본 성질을 살펴보기 위해 모의실험을 수행하였으며, Persones $Ag{\acute{e}}es$ Quid(PAQUID) 자료 (Helmer 등, 2001)에 제안한 모형을 적용하고 그 결과를 해석하였다.
사망과 같은 종말 사건은 중간 사건을 중도절단 시킬 수 있지만 재발과 같은 중간 사건은 종말 사건을 중도절단 시킬 수 없는 자료를 준경쟁위험 자료라고 하는데 의학 및 보건, 역학 분야에서는 이와 같은 자료를 자주 접하게 된다. 본 논문에서는 질병-사망 모형에 포함된 세 가지 전이 시간이 모두 구간중도절단된 준경쟁위험 자료를 분석하기 위해 정규 프레일티를 가진 와이블 회귀모형을 제안하였다. 각 개체는 중간 사건과 종말 사건의 발생 여부에 따라 다섯 가지 유형으로 구분되는데 유형별로 조건부 우도함수를 유도하였다. 조정중요표본추출법을 써서 주변 우도함수를 유도한 후 반복의사뉴톤 알고리즘을 써서 최적 추정량을 얻었다. 제안한 추정 방법의 소표본 성질을 살펴보기 위해 모의실험을 수행하였으며 또한 제안한 추정 방법을 Personnes Agées Quid (PAQUID) 자료에 적용하였다.
Journal of the Korean Data and Information Science Society
/
제25권2호
/
pp.327-336
/
2014
재발 사건 자료란 연구대상이 같은 종류의 사건을 반복적으로 경험할 때 발생하는 자료이다. 이러한 재발 사건은 사회과학, 자연과학, 공학, 의약학 등 다양한 분야에서 나타날 수 있다. 재발 사건자료를 분석할 때 연구자의 관심에 따라 사건 발생시간이나 사건 발생간의 소요시간을 이용하여 분석할 수 있다. 이 논문에서는 사건 발생시점간의 소요시간을 이용하여 불완전한 관측을 가진 재발 사건자료를 분석하고자 한다. 이 자료의 특징은 일부 관측대상들이 일정기간 동안 연구에서 제외되는 관측틈을 갖는다는 것이다. 이 때 관측틈은 불완전한 형태로 나타나게 되는데 그 이유는 관측틈의 시작시점은 알고 있지만 종료시점은 알 수 없기 때문이다. 이러한 미지의 종료시점을 추정하기 위해서 구간 중도 절단 방법이 적용된다. 따라서 종료시점이 추정된 후 프레일티를 포함한 회귀모형을 적용하여 공변량이 사건 재발에 미치는 영향을 알아볼 수 있다. 또한 제안한 방법을 실제자료에 적용하여 관측틈을 고려한 경우와 고려하지 않은 경우를 비교하고자 한다.
본 논문에서는 사망과 같은 종말사건의 발생 유무는 알고 있지만 치매 발병과 같은 중간사건이 구간중도절단 되었거나 연구 기간 도중에 추적이 끊겨 결측된 준경쟁적위험 자료에 대해 다중상태모형을 적용하여 모수를 추정하는 방법을 제안하였다. 이를 위해 본 논문에서는 상태 간의 전이강도는 로그정규 프레일티를 랜덤효과로 가진 Lin과 Ying(1994)의 가산위험모형을 따른다고 가정하였다. 다섯 가지 상태를 가진 다중상태모형에서 가능한 여섯 가지 경로별로 조건부우도를 정의하였고, 주변우도를 구하기 위해 조정중요표본추출법을 적용하였으며 반복유사뉴튼 방법으로 최적해를 구하였다. 소표본 모의실험을 통해 모수의 95% 신뢰구간 포함률이 명목값에 얼마나 가까운지 살펴보았으며, 제안한 모형을 Persones $Ag{\acute{e}}es$ Quid (PAQUID) 자료 (Helmer 등, 2001)에 적용하고 그 결과를 해석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.