DOI QR코드

DOI QR Code

Statistical Analysis of Recidivism Data Using Frailty Effect

프레일티를 이용한 재범 자료의 연구

  • Kim, Yang-Jin (Department of Statistics, Sookmyung Women's University)
  • 김양진 (숙명여자대학교 통계학과)
  • Received : 20100400
  • Accepted : 20100700
  • Published : 2010.08.31

Abstract

Recurrent event data occurs when a subject experience the event of interest several times and has been found in biomedical studies, sociology and engineering. Several diverse approaches have been applied to analyze the recurrent events (Cook and Lawless, 2007). In this study, we analyzed the YTOP(Young Traffic Offenders Program) dataset which consists of 192 drivers with conviction dates by speeding violation and traffic rule violation. We consider a subject-specific effect, frailty, to reflect the individual's driving behavior and extend to time-varying frailty effect. Another feature of this study is about the redefinition of risk set. During the study, subject may be under suspension and this period is regarded as non-risk period. Thus the risk variables are reformatted according to suspension and termination time.

재발 사건 자료(recurrent event data)는 연구 대상이 같은 종류의 사건을 여러 번 경험할 때 발생되는 자료 형태이다. 재발 사건간에 연관관계를 위해 프레일티가 사용된다. 프레일티 효과는 랜덤효과의 한 형태로 개인별 특성을 표현하기 위해 생존 분석에서 널리 적용되어 왔다. 본 논문에서는 이러한 개인별 효과가 시간에 따라 변할 수 있음을 가정하여 시간 가변 프레일티를 적용한다. 본 논문에서는 적용 사례로 범죄 재범 자료를 분석한다. 특히 일부 관측 대상들은 일정 기간 동안 연구에서 제외되는 불연속성을 경험하게 되며 이는 위험그룹(risk group)의 새로운 정의가 필요하다. 모수 추정을 위해 조각 상수 위험 함수가 사용되며 EM 알고리즘이 적용된다.

Keywords

References

  1. 주희종 (2001). 가석방 출소자의 재범에 관한 한,미간 비교 연구, <한국공안 행정 학회>, 12, 317-342.
  2. Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions, Dover, New York.
  3. Cook, R. J. and Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events, Springer, New York.
  4. Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. (2002). Analysis of Longitudinal Data, Oxford Express.
  5. Huang, C. Y. and Wang, M. C. (2004). Joint modeling and estimation for recurrent event processes and failure time data, Journal of the American Statistical Association, 99, 1153-1165. https://doi.org/10.1198/016214504000001033
  6. Kim, Y. (2007). Analysis of panel count data with dependent observation time, Communications in Statistics, 35, 983-990.
  7. Kim, Y. and Jhun, M. (2008). The analysis of recurrent event data with incomplete observation gaps,Statistics in Medicine, 27, 1075-1085. https://doi.org/10.1002/sim.2994
  8. Klein, J. P. (1992). Semiparametric estimation of random effects using the Cox model based on the EM algorithm, Biometrics, 48, 795-806. https://doi.org/10.2307/2532345
  9. Lawless, J. F. and Zhan, M. (1998). Analysis of interval-grouped recurrent event data using Piecewise constant rate functions, Canadian Journal of Statistics, 26, 549-565 https://doi.org/10.2307/3315717
  10. Liu, L., Wolfe, R. A. and Huang, X. (2004). Shared frailty models for recurrent events and terminal event,Biometrics, 60, 747-756. https://doi.org/10.1111/j.0006-341X.2004.00225.x
  11. Nielsen, G. G., Gill, R. D., Andersen, P. K. and Sorensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models, Scandinavian Journal of Statistics, 19, 133-137.
  12. Sun, J., Kim, Y., Hewett, J., Johnson, J. C., Farmer, J. and Gibler, M. (2001). Evaluation of traffic injury prevention programs using counting process approaches, Journal of the American Statistical Association,96, 469-475. https://doi.org/10.1198/016214501753168181
  13. Vaida, F. and Xu, R. (2000). Proportional hazard model with random effects, Statistics in Medicine, 19,3309-3324. https://doi.org/10.1002/1097-0258(20001230)19:24<3309::AID-SIM825>3.0.CO;2-9

Cited by

  1. Statistical analysis of recurrent gap time events with incomplete observation gaps vol.25, pp.2, 2014, https://doi.org/10.7465/jkdi.2014.25.2.327
  2. Joint model of longitudinal data with informative observation time and competing risk vol.29, pp.1, 2016, https://doi.org/10.5351/KJAS.2016.29.1.113