• Title/Summary/Keyword: 풍 하중

Search Result 400, Processing Time 0.027 seconds

Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane (컨테이너 크레인의 전산유동해석과 풍동실험에 의한 풍하중 분석)

  • Lee, Su-Hong;Han, Dong-Seop;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Container cranes are vulnerable structure to difficult weather conditions bemuse there is no shielding facility to protect them from strong wind. This study was carried out to analyze the effect of wind load on the structure of a container crane according to the change of the boom shape using wind tunnel test and computation fluid dynamics. And we provide a container crane designer with data which am be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. In this study, we applied mean wind load conformed to 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field was divided as interval of 10 degrees to analyze the effect according to a wind direction. In this conditions, we carried out the wind tunnel test and the computation fluid dynamic analysis and than we analyzed the wind load which was needed to design the container crane.

An Evaluation of the Structural Stability of a Clip Type Prefabricated Greenhouse under Strong Wind and Heavy Snow Conditions (조립식 클립형 비닐하우스의 강풍 및 폭설시 구조 안정성 평가)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3423-3428
    • /
    • 2014
  • Numerical studies were performed to evaluate the structural safety of a greenhouse under both snow and wind loads. In the case of a wind load, fluid-structure interaction (FSI) method was used to consider the local pressure distributions on the greenhouse-induced by aerodynamic characteristics. The results showed that the maximum stress and deformation occur near the junction of pipe supports and rafters of the roof, where connecting clips are installed. Moreover, the wind load is a more severe condition than a snow load. Overall, these results will be used to design a prefabricated connecting clip with easy installation and low maintenance.

Wind Tunnel Investigation of Fluctuating Pressure Inside Building (풍하중에 의한 건물내부 압력의 동적변화에 관한 연구)

  • 이경훈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.133-141
    • /
    • 1990
  • The nature of fluctuating air pressure inside building was studied by testing a building model in a wind tunnel. The model has a single room and a window opening. Various opening conditions were tested in both laminar uniform wind and turbulent boundary-layer wind. The RMS and the spectra of the fluctuating internal pressure were measured. The test results support a recent theory which predicts the behavior of internal pressure under high wind based on aerodynamic analysis.

  • PDF

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.

Static, Dynamic and Buckling Analyses of a Power Transmission Tower under Wind Load (풍하중을 받는 송전철탑의 정적, 동적 및 좌굴해석)

  • Jung, Hyung-Jo;Shin, Dong-Seung;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.369-374
    • /
    • 2006
  • This paper describes dynamic characteristics of a power transmission tower consisting of lots of power lines and insulators. A numerical 3D modeling for the static, dynamic and buckling analyses of the power transmission tower is presented considering the case when the power lines are cut. Eigenvalue analysis indicates that the transmission tower shows different behavior comparing to usual structures governed by several low modes. The transmission tower is governed by lots of modes. It is verified that the transmission tower is structurally safe against the static wind and buckling loads. But the structural and buckling safety is not guaranteed when all power lines are cut, which comes to collapse the transmission tower. Further study is in need to overcome such case. Wind dynamic analysis shows that fluctuating wind loads increase the response of the tower.

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.

Study on Dynamic Instability of Plane Membrane Structures under Wind Action (풍하중을 받는 평면 막구조물의 동적불안정 판정에 관한 연구)

  • Han, Sung-Eul;Hou, Xiao-Wu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • In this paper, dynamic instability of plane membrane structures under wind action has been studied. The key to solving the governing equations of membrane structures under wind action is how to obtain the air pressure on membrane. Based on Bernoulli's theorem, fluid pressure has a certain relationship with velocity potential. Velocity potential could be solved according to thin aerofoil theory, where air around the membrane is regarded as a sheet of vortices. In this paper, we take advantage of the most commonly used three-node triangular membrane element and weighted residual-Galerkin method to obtain the determining equation for stability evaluation. Square and rectangular membrane structures are studied. The influence of initial prestressing force and wind direction towards critical wind velocity are also analyzed in this paper.

Research on Coupling Control of Adjacent Buildings under Multiple Hazards (다중재난하중을 받는 인접건물의 연결제어에 대한 연구)

  • Kwag, Shinyoung;Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.36-41
    • /
    • 2016
  • In this study, numerical analyses were used to investigate the performance of a coupling control method for the dynamic responses of adjacent buildings under multiple hazards. Numerical simulations were done using the earthquake loads of regions with strong seismicity in Los Angeles, California, and the wind loads in regions with strong winds in Charleston, North Carolina. The artificial earthquake and wind loads were made using SIMQKE and Kaimal Spectrum based on ASCE 7-10. Ten-story and twenty-story adjacent buildings were selected as example structures, and nonlinear hysteretic dampers were used to connect them. The Bouc-Wen model was used to model the nonlinear hysteretic dampers. The results show that the proposed control method could effectively reduce the dynamic responses, and the optimal control designs were different for each hazard.

Numerical Estimation of Wind Loads on FLNG by Computational Fluid Dynamics (전산유체역학을 이용한 FLNG의 풍하중 추정에 관한 연구)

  • Sang-Eui, Lee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.491-500
    • /
    • 2022
  • It has been noted that an accurate estimation of wind loads on offshore structures such as an FLNG (Liquefied Natural Gas Floating P roduction Storage Offloading Units, LNG FPSOs) with a large topside plays an important role in the safety design of hull and mooring system. Therefore, the present study aims to develop a computational model for estimating the wind load acting on an FLNG. In particular, it is the sequel to the previous research by the author. The numerical computation model in the present study was modified based on the previous research. Numerical analysis for estimating wind loads was performed in two conditions for an interval of wind direction (α), 15° over the range of 0° to 360°. One condition is uniform wind speed and the other is the NPD model reflecting the wind speed profile. At first, the effect of sand-grain roughness on the speed profile of the NPD model was studied. Based on the developed NPD model, mesh convergence tests were carried out for 3 wind headings, i.e. head, quartering, and beam. Finally, wind loads on 6-degrees of freedom were numerically estimated and compared by two boundary conditions, uniform speed, and the NPD model. In the present study, a commercial RANS-based viscous solver, STAR-CCM+ (ver. 17.02) was adopted. In summary, wind loads in surge and yaw from the wind speed profile boundary condition were increased by 20.35% and 34.27% at most. Particularly, the interval mean of sway (45° < α <135°, 225° < α < 315°) and roll (60° < α < 135°, 225° < α < 270°) increased by 15.60% and 10.89% against the uniform wind speed (10m/s) boundary condition.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.