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Abstract

In this paper, dynamic instability of plane membrane structures under wind action has been studied. The key to solving the
govermning equations of membrane structures under wind action is how to obtain the air pressure on membrane. Based on
Bernoulli’'s theorem, fluid pressure has a certain relationship with velocity potential. Velocity potential could be solved according to
thin aerofoil theory, where air around the membrane is regarded as a sheet of vortices. In this paper, we take advantage of the
most commonly used three-node triangular membrane element and weighted residual-Galerkin method to obtain the determining
equation for stability evaluation. Square and rectangular membrane structures are studied. The influence of initial prestressing force

and wind direction towards critical wind velocity are also analyzed in this paper.

Keywords ' dynamic instability, flutter, wind action, membrane structures, thin aerqfoil theory
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As a newly developed structural system, membrane
structure attracts more and more attention due to its
advantages such as light weight, easily constructed, good
aseismatic and economic property and so on. It is widely
applied in stadium, airport and other large spatial
structural systems.

Because membrane structures are light weighted
and flexible, they possess a good earthquake resistant
property. However, they are highly susceptible to the

wind action simultaneously. Based on these properties,
wind load is regarded as the dominant load in
dynamic analysis of membrane structures. When wind
velocity reaches a certain value, loss of stability may
occur, which contains “divergence type” and “flutter type’.
Divergence type instability means that structure
moves with exponentially growing displacement and
without vibration. On the contrary, flutter type
instability means that structure vibrates with
exponentially growing amplitude.

This kind of aeroelastic instability was firstly
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studied in aerospace field. The results were further
applied into studies of bridge. plate and shell as well
as membrane structures. Among the papers obtained,
Kunieda (1975) firstly presented the method to
determine flutter critical wind velocity of hanging
membrane roofs. After that, Kornecki{1976), Newman
and Paidoussis(1991), Lucey and Carpenter(1992) all
try to make use of analytical method to solve this kind
of instability problem. Sygulski(1993. 199¢. 1997.
2007) is the first person to take advantage of
numerical method to solve aeroelastic instability.

In this paper, we will introduce how to use FEA
method to solve aeroelastic instability of membrane
structures. In chapter 2, we will introduce some basic
formulations. Among them, the most important thing
is to obtain air pressure on membrane. In this paper,
we will solve alr pressure on membrane based on “thin
aerofoil theory”. In chapter 3, we will interpret how to
use FEA method to solve these basic formulations. In
chapter 4, stability criteria will be introduced.
Whether the membrane structure is unstable will be
determined according to these criteria. Finally, two
numerical examples will be studied in chapter 5,
which include square and rectangular membrane
structures. The impact of prestressing force and wind

direction will be analyzed.
2. Basic formulation

The governing equation of motion for membrane

structure under wind action is

3w *w 3w

s Tt D, =t Ap =0

ax- ¥y ay2 1Y 85‘ \p (1)
Where,

T,T, - prestressing forces in x and y direction

Ps ~ density of membrane
w -~ displacement in z direction
Ap=p,—p,, pressure difference

P1>P, — air pressure on the upper and lower side of

membrane
Pressure on each side could be obtained from
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Bernoulli's equation.

pP= _pa{%+ ai) (2)

Where, 0, - density of air

¢ - disturbance velocity potential

U - wind velocity

a - wind direction angle

Velocity potential should satisfy Laplace’s equation.

Vig=0 (3)

The solution of Eq. (3) for the half space (z > 0) of
the incompressible air could be expressed based on
thin aerofoil theory.

1 1 1, 1
o(p.0) = = 1 g e @

sdz r(P,0) 4o =
S =%Zz - disturbance velocity in z direction
r(P,Q) - distance between point P and @ , P and Q
are arbitrary points on the surface.

Apart from that, disturbance velocity and the

motion of membrane should satisfy following
relationship.
8¢ ow ow
—+U—
/= 3z ot ox, ®)

3. Numerical method by FEA

Separating the variables into time term and space

term, for example, ¢(P,f)=¢(x,y)-T(t) and expressing
the time term with the exponential form: 7(s)=e"

. Thus, Egs. (1), (2), (4), (5)

could be transformed as follows:

then ¢(P,r)=¢(x,y)-e*

*w 9w ~
Tx"é';z—‘f e PswtAp =0 6)
- ~ 3
p=—pa[/1¢>+U f’} 0
ox,
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Fig. 1 Three-node triangular element
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¢-Ejsf'mdsg (8)
fzﬂsz+Uaaf) 9)
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The most commonly used three-node triangular
element (as shown in Fig. 1) will be used to solve
above four equations. Before calculation, we should
define shape functions firstly.

Shape functions could be defined with the

coordinates of three end nodes.

N, :i[(xzh—x3y2)+(y2—y3)x+(x3—x2)J’] (10a)

1
N2=£[(x3y1—x1y3)+(y3—y1)x+(x1—x3)y] (10b)
1
Ny =l —ny)+ -y)ve o —xyl - (100)
1 x5 ¥
Where, A:Edetl X, y,| (area of triangle)
1 x; ¥

Here, x and y are coordinates of an arbitrary point
inside the triangle. With these shape functions, any
variables of a point inside the triangle could be
expressed by its three end points. For example, the

disturbance velocity potential of a point is

o

o =v N, N Rg =Vl (11)
o)

According to the weighted residual-Galerkin

method, Egs. (6), (7), (8), (9) could be solved by

&
o

o

o X
T

approximating them in an integral form over an
element, where the shape functions are used as

weighting functions. Take Eq. (9) for example,

dw

_[ NT(F-aw-U2%) aa=0 (12)
o ox,,

- . oW ,
Where, f, w, . could be expressed by end point

value through shape functions.

7=Ij7} (13a)
=~} (13h)
ow ON |

ox, - {axa j|{w} (13¢)

Then Eq. (12) could be transformed as follows.
B,f = ABw +UB,w (14)

For the same reason, Egs. (15), (16) and (17) could
be obtained.

TxB3+TyB4_/12pSB1W+A[7:O (15)
Bp=-p,(AB, +UB,)p (16)
¢_:st (17)
Here,

B = IQNT'N dQ (182)
; oN

B= | N Sao (18b)

Q; X

; oNT ON

b= ZdQ

e P 180

—dQ
N (18d)

T
B - J N N
(i is the number of element)

Bs in Eq. (17) could be obtained as follows.

L V)
BshR)=o, in r(P,0)

27 A
i=]

dQ (19)

Where, ne - number of element relevant to point K.

N;(x,y) - shape function of point O ). j=1 or 2
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Fig. 2 Variables used in Ea. (19).
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Fig. 3 Triangular coordinates

or 3, which depends on the definition of element [.
Numerical integration over a triangle as Eq. (19)
could be performed in terms of the triangular

coordinates(Fig. 3) through coordinates transformation.

1 p1-¢
j F(x,y)dS = j j FEMIEy) dn dE
S 9490
, 20)
=Zf(§ia77i)'J(§iwng)‘Wi
i=1

o
Where, J(£,m) - Jacobian matrix. /= gf: ’3f
an an

n - number of Gauss integration points

wi - weighting factor

Substituting Eq. (14), (18), (17) into Eq. (15), we
could obtain final Eq. (21).

(K+AD+ A MYw =0 2n
Where, K=K, +K,

K, =T,B,+T,B, (structural stiffness )

K, =p,U’B,BB'B, (aerodynamic stiffness)

M=M, +M,
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M, =-pB, (structural mass)
M, =20,8B B; (added air mass)
D = p,UB,(BsB;"' B, + B B,B;)

(aerodynamic damping)

4. Stability criteria

Above Eq. (21) is a quadratic eigenvalue problem.

We can change it into a general form by introducing

w' = Aw . then

0 1w (w
{- MK - M'IDHW*} B ﬂ{w*} =0 (22)

Assuming that system has n degrees of freedom,
therefore, Eq. (22) has 2n eigenvalues and

eigenvectors. We write it as A = diag(4,4,,,4y,) , and

the corresponding eigenvectors are X z[xlax23"'7x2a].

Thus. the displacement could be expressed based on
these eigenvalues and eigenvectors.

in

wit) = 2 a‘,xje/l’" (23)
=1

Where, o — arbitrary constant coefficient

Generally, eigenvalues are complex values.
A, =y;+i-@;, ;=./-1.From Eq. (23), we can know

that the system is stable only when all of the real
parts of the eigenvalues are less than 0. As long as
one is larger than 0, the system is unstable. Among
them, if the real part is larger than 0 and the
imaginary part is equal to 0, which will give rise to an
exponentially growing motion without vibration. This
kind of instability is called as “divergence’. If the real
parts is larger than 0 and the imaginary part is not
equal to 0, then the instability could be called as
“flutter’. The occurrence of flutter requires the
coalescence of two natural frequencies. The physical
interpretation of the flutter phenomenon is that one
vibration mode absorbs energy and feeds it into
another.

Stability criteria as shown in Fig. 4 could be
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Fig. 4 stability criteria

summarized as follows.
(1) Divergence:Re(4,)>0 and Im(4,)=0 for any
one of the eigenvalues.
(2) Flutter: Re(4,)>0 and Im(4,)#0 for any one

of the eigenvalues.
5. Numerical examples
5.1 square membrane structure

As shown in Fig. 5 and Fig. 6, 6mx6m Square
membrane with four sides fixed, the density of
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Fig. 5 Square membrane
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Fig. 6 Wind direction
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membrane P, is 1.O5kg/m2‘ The air density takes

1.21kg/m3. Wind interacts with membrane on its
upper surface with a constant velocity U. The air

under the membrane is regarded as static(U=0).

5.1.1 Circular frequencies

Variation of circular frequencies with the increase
of wind velocity is shown in Fig. 7. Here, prestressing
forces in the x direction and y direction are same, and
wind moves along the x direction of the membrane.
When wind velocity approaches to about 45m/s, the
1% circular frequency decreases to 0. The membrane
becomes instability of divergence type. When wind
velocity is increased te 52m/s, the o™ circular
frequency also decreases to 0. When wind velocity
reaches 55m/s, these two modes are combined
together. With the increase of the combined circular
frequency, membrane gets into instability region of
flutter type.

As shown in Fig. 7, when the wind velocity is 0, the

value of circular frequency is natural frequency.

5.1.2 Influence of prestressing force

The relationship between critical wind velocity and
prestressing force is shown in Fig. &8 The lower line
shows the critical wind velocity for divergence type
instability Ued , while the upper line shows the critical
wind velocity for flutter type instability U At the
same time, these two lines divide the total area into
three parts. These three regions are stable region,

divergence region and flutter region from the bottom up.
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Fig. 7 Circular freguencies variation
(1, 2, -, 9 are the number of eigenvalues)
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Fig. 8 Influence of prestressing force

Apart from that, we could obtain that the critical
wind velocity increases with prestresing force, which
is correct for both divergence type and flutter type
instability. Therefore, the reasonable prestressing

force could prevent the occurrence of instability.

5.1.3 Influencing of wind direction

When wind direction is not along the axis of
membrane but with an angle +, the relationship
between critical velocity and wind direction are shown
in Fig. 9. From Fig. @, the relationship between
critical velocity and wind direction are shown in Fig.
9. From Fig. 9, we can obtain the relationship
between critical velocity and wind direction. When
angle @ =45°, the critical velocity of divergence type
reaches its maximum, while the critical velocity of
flutter type reaches its minimum. Therefore, the most
dangerous angles for divergence type instability are 0°
and 90°. On the contrary, the most dangerous angle
for flutter type is 45°.

" - Divergence type
31 = - =

i Fluttertype
28

critical wind velocity(m/y)

27

25

g 30 60 s

wind direction angle(")

Fig. 9 Influence of wind direction(T, =7, =500N/m )
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Bm

Fig. 10 Rectangular membrane
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Fig. 11 Wind direction angle
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5.2 Rectangular membrane structure

12m*x6m rectangular membrane with four sides
fixed is divided into 64 elements(as shown in Fig. 10).
Structure has 21 degrees of freedom. Wind field
condition and membrane material are same with
above example. Wind direction angle is shown in Fig.
11.

5.2.1 Circular frequencies

Circular frequencies variation with the increase of
wind velocity is shown in Fig. 12. These variations
also depend on wind direction. Thus, we analyze two
extreme situations: angle ¢ are 0° and 90°,

As we know, flutter type instability happens when
two modes are coupled. As shown in Fig. 12, when
wind direction angle @ is 0°, with the increase of wind
velocity up to 32m/s, circular frequency of mode 1
decrease to 0, structure becomes instability of divergence
type. When wind velocity continues increasing, circular
frequency of mode 1 increases and converges with mode
4 at 35m/s, structure becomes instability of flutter
type.

Different from the situation above, when angle « is
90°, circular frequency of mode 1 decreases to 0 at
32m/s. However, the real part of the eigenvalue is
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Fig. 12 Circular freguencies variation

negative at this time, so the structure is stable. When
wind velocity increases to 33m/s, two modes converge
at one point, structure becomes flutter type
instability. Of course, there are also other converging
points at higher wind velocities, but we are generally
interested in the lowest wind wvelocity at which

instability occurs, so we will not interpret it in detail.

5.2.2 Influence of prestressing force

The relationships between prestressing force and
critical wind velocity are shown in Fig. 13. As
introduced in 5.2.1, towards different wind direction,
their instability forms are different. When wind
direction angle « is 0°, structure becomes instability
of divergence type before flutter type. However, when
angle « is 90° structure becomes flutter type

instability firstly. Divergence occurs at a higher wind

e i rpEnCe type

e flutter type

eritical wind velocity (m/s)

200 Fo0 1200 1700 2202

prestressing force (N/m)

(a) a=0°

critical wind veloeity(m/s)

200 700 1209 1720 2200

prestressing force(N/m)

(b) a=90°
Fig. 13 Influence of prestressing force

velocity and its influential range is small, so we

neglect it here.
6. Conclusion

In this paper, we take advantage of FEA method to
study the aeroelastic instability of two-dimensional
membrane structures. The basic principles and
procedures are introduced in this paper. We could also
obtain two important conclusions through numerical
examples.

1. Prestressing force has a big impact on critical
wind velocity, so we could select reasonable
prestressing force to prevent the occurrence of
instability. ;

2. Towards wind direction, its influence on critical
wind velocity is very small for square membrane.
However, it plays an important role in the
occurrence of instability for rectangular membrane.
Therefore, in order to avoid aeroelastic instability,

optimal structure direction is also important.
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