• Title/Summary/Keyword: 풍화.침식

Search Result 94, Processing Time 0.021 seconds

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis (영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석)

  • Kim, Young Sang;Lim, Jae Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.25-34
    • /
    • 2016
  • Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

Characteristics and classification of landform relieves on mountains and valleys with bedrock types (기반암별 산지와 곡지의 지형 기복 특성과 유형)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • This study analyzed characteristics of landform relieves on 12 bedrock whole(W) areas and 24 mountain(M) and valley(V) areas. Based on this result, characteristics and relations between bedrocks and landform relief were classified as follows. 1) gneiss-height M and granite-height W, M, V areas show active stream incision for uplift. However these areas have relatively low relief and grade compared to high altitude, because effect of denudation don't pass on whole slope. 2) gneiss-height W, V, gneiss-mid M, schist M, granite-mid M, volcanic rock W, M, sedimentary rock-height(conglomerate) W, M, V, sedimentary rock-mid (sandstone and shale) M, limestone W, M areas have active stream erosion and mass movement, but landform relieves are on the high side, because these have resistant bedrock and geological structure against weathering and erosion. 3) gneiss-mid W, V, schist W, V, granite-mid W, V, volcanic rock V, sedimentary rock-mid W, V, sedimentary rock-low(shale) M, limestone V areas landform relieves are on the low side, because these have weak resistance and active weathering, mass movement, erosion, transportation and deposit. 4) gneiss-low W, M, V, granite-low W, M, V, sedimentary rock-low W, V areas landform relieves are very low, because these don't have active erosion and mass movement as costal area with low altitude.

Geophysical Investigation of the Subsurface in the Dok-do Island (물리탐사를 이용한 독도 지반조사)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.125-130
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface in Dok-do island, along with rock physical properties. The resistivity results in Seo-do island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction. Bedded Rapilli Tuff in the downstream was more severely influenced in depth by weathering and erosion than Trachy Andesite II in the upstream area. The physical properties of the rocks illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Tuffs are the most soft rocks in Dok-do island.

  • PDF

Characteristics of Tidal Beach and Shoreline Changes in Chonsu Bay, West Coast of Korea (한반도 서해 천수만의 해안선 변화 및 조간대 해빈 특성)

  • Ryu Sang-Ock;Chang Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.584-596
    • /
    • 2005
  • Morphology, surface sediments, sedimentation rates and sea-cliff erosion have been monitored, for one year to investigate the shoreline changes and tidal beach characteristics in Cheonsu Bay along the west coast of Korea. The seacliff of the bay consists of intensively weathered sedimentary rocks and soft soil, showing an erosion range of $-58.9\~73.3cm/yr$ by a weak wave forcing. Active sea-cliff erosions are recognized by peculiar geomorphic features, including saw teeth-shaped coastline, gravels, relict weathered basement-rock and 'Island Stack' exposed on the high-tide beach surface. The beach sediments show low compositional maturity at the south and north headlands and gradually high towards the central part. This observation seems to be caused by the fact that beach sediments are to originate from the both headlands in the study area and then transported by long-shore current associated with a wave action.

A Geomorphology on the Ulleungdo (울릉도 지형지)

  • Kwon, Dong-Hi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-57
    • /
    • 2012
  • The volcanic edifice of Ulleungdo is largely divided into a shield volcano underwater and a tholoide above seawater. The geological features of the volcano above seawater are basically alkali volcanic rocks that are further divided into five geological strata: agglomerates and tuffs trachyte and phonolite trachytic pumice trachyandesite, and sedimentary layer. The topography of Ulleungdo consists of volcanic landform on the whole, and such volcanic landform is weathered and eroded into various weathering landform, stream landform, coastal landform, structural landform, etc. Major volcanic topography includes caldera basin, central cone, and columnar joint, whereas weathering topography features, tafoni, gnamma, tor, weathered cave, talus, etc. In major coastal topography are sea cliff, wave-cut platform, sea stack, sea arch, sea cave, shingle beach, coastal terrace, etc. For stream topography, its development is minimal except for waterfalls.

대구분지 북부 팔공산 지역의 지질에 따른 지형발달의 특성

  • 조우영;윤순옥;황상일
    • Proceedings of the KGS Conference
    • /
    • 2002.11a
    • /
    • pp.97-100
    • /
    • 2002
  • 지표의 기복은 암석의 차별적 풍화와 침식을 반영하므로, 기복의 형성에서 암석이 차지하는 몫을 이해하는 것은 중요하며 이 문제는 근대지형학의 발달 초기부터 중요하게 다루어져 왔다(권혁재, 2002).(Picture Omitted) 대구분지 북쪽 분수계를 이루고 있는 팔공산의 기반암은 중생대 백악기 말부터 제 3기초기에 걸쳐 백악기 퇴적암인 경상누층군을 관입하여 형성된 불국사화강암이다.(중략)

  • PDF

Effect of Rainfall Intensity, Soil Slope and Geology on Soil Erosion (토양침식에서의 강우특성, 토양경사 및 지질의 영향)

  • Nam, Koung-Hoon;Lee, Dal-Heui;Chung, Sung-Rae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.69-79
    • /
    • 2014
  • This study aims to elucidate the relative importance of geological characteristics, soil slope, and rainfall intensity in relation to soil erosion. To this end, indoor rainfall simulation experiments were carried out under different conditions of rainfall intensities, soil slope, and geological characteristics. The test results show that the factors affect soil erosion in the order of soil slope > rainfall intensity > organic content in the soil. Erosion rates were proportional to rainfall, and increase with increasing clay content. Therefore, the soil erosion rate increases strongly with increasing organic content and clay content. The results show that the soil erosion rate in areas of metamorphic rocks shows a marked increase compared with areas of steep slope and sedimentary rocks. These results indicate that the geological characteristics to produce soil are closely related to sedimentation before and after erosion, providing basic information for the development of models to predict soil erosion rates.

A study on the evolution of granite hill on the west coast area (서해안의 화강암 암체 지형 발달에 대한 연구 - 반발 강도와 화학 조성 특징을 중심으로 -)

  • Kim, Jong Yeon;Yang, Dong Yun;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.19-40
    • /
    • 2014
  • Rock rebound values and chemical compositions of Gamak island at Sangha, Gochang, Jeollabuk do are analysed as a part of geomorphic survey of that area. Some corestones are formed by deep weathering found from the summit of rock mass of Gamak island, while the rocks a part of weathering front are exposed at the foot of the island. Rebound values of rock increase toward coastal plain, so summit would be weak in resistance to erosion. It can be assumed that chemical weathering is more active at the summit by the chemical index of alteration and changes in chemical composition ratio. However it should be mentioned that the samples are taken from the surface of the rock mass that more fresh part will be exposed when the weathered parts are removed. The chemical composition and CIA values of the polygonal cracks found from on the surface of weathering rind showed that this part has values between those of the summit and the footslope. The bottom of weathering rind with polygonal cracks has higher CIA value than those of the surface. Though it supports the result from the Bisul Mt., there also difference in the ratio of SiO2. It looks caused by the difference in weathering environment and chemical difference in parent rock. In summary Gamak island is the remnants of weathering front after removal of weathered material. The removal processes are more active at the footslope where the coastal processes are stronger than the summit.

Mechanical Properties of Rocks in Dokdo (독도 암석의 역학적 특성에 관한 연구)

  • Park, Chan;Jung, Yong-Bok;Song, Won-Kyong;SunWoo, Choon;Kim, Bok-Chul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Dokdo is a volcano edifice originating from an oceanic island that was formed around 3 million to 2.2 million years ago, and it consists of Dongdo(eastern island) and Seodo(western island). Even though Dokdo is a small volcanic island, Dokdo has infinite potential value and significant economic, social, scientific, and technical aspects due to its resources, ecological and territorial value. In addition, it is of national interest with regards to the dispute with Japan over the dominium of Dokdo. A need to evaluate the ground stability of Dokdo, especially in Dongdo, has been seriously raised recently due to the various cracks caused by the progressive weathering and corrosion. This study dealt with the geology and geological layers of Dokdo and identified the status of ground cracks as the previous research to evaluate the ground stability of zones of concern in Dongdo. Also, this study analyzed the relationships between physical and mechanical properties with rock types. The results showed that the values of rock properties in Dokdo are lower contrary to the general rocks in Korea, and tuff was especially affected by the weathering and corrosion.

A study on basin structures in Yanggu and Hwacheon and their application to Geotoursim purposes (강원도 양구, 화천 일원의 분지 지형과 지오투어리즘 활용방안에 관한 연구)

  • PARK, Kyeong;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.97-108
    • /
    • 2012
  • There exist plenty of geomorphological resources in Haean Basin, Yonghwasan Mt., and Gandong Basin in Eastern DMZ area in Gangwon Province which can be used as geotourism resources. Meticulous strategies are necessary to improve the geotourism bases in such a mountainous region. Potential geosites including Yongneup and Simjeog wetlands are nearby, so it is necessary to include these geosites when planning geotourism courses. The values of these sites coinciding with the goal of geopark are as follows: this region shows contrasting landforms derived from distinctive rocks such as gneiss and biotite granite, and there are many landforms derived from differential weathering of granite too. They can be used to explain the developmental history of numerous basin structures in entire Korean peninsula.